8 research outputs found

    Detectors for the James Webb Space Telescope Near-Infrared Spectrograph I: Readout Mode, Noise Model, and Calibration Considerations

    Full text link
    We describe how the James Webb Space Telescope (JWST) Near-Infrared Spectrograph's (NIRSpec's) detectors will be read out, and present a model of how noise scales with the number of multiple non-destructive reads sampling-up-the-ramp. We believe that this noise model, which is validated using real and simulated test data, is applicable to most astronomical near-infrared instruments. We describe some non-ideal behaviors that have been observed in engineering grade NIRSpec detectors, and demonstrate that they are unlikely to affect NIRSpec sensitivity, operations, or calibration. These include a HAWAII-2RG reset anomaly and random telegraph noise (RTN). Using real test data, we show that the reset anomaly is: (1) very nearly noiseless and (2) can be easily calibrated out. Likewise, we show that large-amplitude RTN affects only a small and fixed population of pixels. It can therefore be tracked using standard pixel operability maps.Comment: 55 pages, 10 figure

    JWST Near-Infrared Detectors: Latest Test Results

    Get PDF
    The James Webb Space Telescope, an infrared-optimized space telescope being developed by NASA for launch in 2013, will utilize cutting-edge detector technology in its investigation of fundamental questions in astrophysics. JWST's near infrared spectrograph, NIRSpec utilizes two 2048 x 2048 HdCdTe arrays with Sidecar ASIC readout electronics developed by Teledyne to provide spectral coverage from 0.6 microns to 5 microns. We present recent test and calibration results for the NIRSpec flight arrays as well as data processing routines for noise reduction and cosmic ray rejection

    Detector Arrays for the James Webb Space Telescope Near-Infrared Spectrograph

    Get PDF
    The James Webb Space Telescope's (JWST) Near Infrared Spectrograph (NIRSpec) incorporates two 5 micron cutoff (lambda(sub co) = 5 microns) 2048x2048 pixel Teledyne HgCdTe HAWAII-2RG sensor chip assemblies. These detector arrays, and the two Teledyne SIDECAR application specific integrated circuits that control them, are operated in space at T approx. 37 K. In this article, we provide a brief introduction to NIRSpec, its detector subsystem (DS), detector readout in the space radiation environment, and present a snapshot of the developmental status of the NIRSpec DS as integration and testing of the engineering test unit begins

    Detectors for the James Webb Space Telescope Near-Infrared Spectrograph I: Readout Mode, Noise Model, and Calibration Considerations

    Get PDF
    We describe how the James Webb Space Telescope (JWST) Near-Infrared Spectrograph's (NIRSpec's) detectors will be read out, and present a model of how noise scales with the number of multiple non-destructive reads sampling-up-the-ramp. We believe that this noise model, which is validated using real and simulated test data, is applicable to most astronomical near-infrared instruments. We describe some non-ideal behaviors that have been observed in engineering grade NIRSpec detectors, and demonstrate that they are unlikely to affect NIRSpec sensitivity, operations, or calibration. These include a HAWAII-2RG reset anomaly and random telegraph noise (RTN). Using real test data, we show that the reset anomaly is: (1) very nearly noiseless and (2) can be easily calibrated out. Likewise, we show that RTN affects only a small and fixed population of pixels. It can therefore be tracked using standard pixel operability maps

    James Webb Space Telescope Near-Infrared Spectrograph: Dark Performance of the First Flight Candidate Detector Arrays

    Get PDF
    The James Webb Space Telescope (JWST) Near Infrared Spectrograph (NIRSpec) incorporates two 5 micron cutoff (lambda(sub co) = 5 micron) 2048x2048 pixel Teledyne HgCdTe HAWAII-2RG sensor chip assemblies. These detector arrays, and the two Teledyne SIDECAR application specific integrated circuits that control them, are operated in space at T approx. 37 K. This article focuses on the measured performance of the first flight-candidate, and near-flight candidate, detector arrays. These are the first flight-packaged detector arrays that meet NIRSpec's challenging 6 e(-) rms total noise requirement

    The Neutron star Interior Composition Explorer (NICER): design and development

    Get PDF

    Neutron Star Interior Composition Explorer X-Ray Timing of the Radio and Îł\gamma-Ray Quiet Pulsars PSR J1412+7922 and PSR J1849-0001

    No full text
    International audienceWe present new timing and spectral analyses of PSR J1412+7922 (Calvera) and PSR J1849−0001, which are only seen as pulsars in X-rays, based on observations conducted with the Neutron Star Interior Composition Explorer. We obtain updated and substantially improved pulse ephemerides compared to previous X-ray studies, as well as spectra that can be well fit by simple blackbodies and/or a power law. Our refined timing measurements enable deeper searches for pulsations at other wavelengths and sensitive targeted searches by the Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo for continuous gravitational waves from these neutron stars. Using the sensitivity of LIGO’s first observing run, we estimate constraints that a gravitational wave search of these pulsars would be obtained on the size of their mass deformation and r-mode fluid oscillation

    Neutron Star Interior Composition Explorer X-ray timing of the radio and gamma-ray quiet pulsars PSR J1412+7922 and PSR J1849-0001

    No full text
    We present new timing and spectral analyses of PSR J1412+7922 (Calvera) and PSR J1849-0001, which are only seen as pulsars in X-rays, based on observations conducted with the Neutron Star Interior Composition Explorer (NICER). We obtain updated and substantially improved pulse ephemerides compared to previous X-ray studies, as well as spectra that can be well-fit by simple blackbodies and/or a power law. Our refined timing measurements enable deeper searches for pulsations at other wavelengths and sensitive targeted searches by LIGO/Virgo for continuous gravitational waves from these neutron stars. Using the sensitivity of LIGO's first observing run, we estimate constraints that a gravitational wave search of these pulsars would obtain on the size of their mass deformation and r-mode fluid oscillation
    corecore