98 research outputs found

    Oral serum-derived bovine immunoglobulin improves duodenal immune reconstitution and absorption function in patients with HIV enteropathy.

    Get PDF
    ObjectivesTo examine the impact of serum-derived bovine immunoglobulin, an oral medical food known to neutralize bacterial antigen and reduce intestinal inflammation, on restoration of mucosal immunity and gastrointestinal function in individuals with HIV enteropathy.DesignOpen-label trial with intensive 8-week phase of bovine serum immunoglobulin (SBI) 2.5 g twice daily with a 4-week washout period and an optional 9-month extension study.MethodsHIV enteropathy was defined as chronic gastrointestinal symptoms including frequent loose or watery stools despite no identifiable, reversible cause. Upper endoscopy for tissue immunofluorescent antibody assay and disaccharide gut permeability/absorption studies were performed before and after 8 weeks of SBI to test mucosal immunity and gastrointestinal function. Blood was collected for markers of microbial translocation, inflammation, and collagen kinetics. A validated gastrointestinal questionnaire assessed changes in symptoms.ResultsAll eight participants experienced profound improvement in symptoms with reduced bowel movements/day (P = 0.008) and improvements in stool consistency (P = 0.008). Gut permeability was normal before and after the intervention, but D-xylose absorption increased in seven of eight participants. Mucosal CD4 lymphocyte densities increased by a median of 139.5 cells/mm2 from 213 to 322 cells/mm2 (P = 0.016). Intestinal-fatty acid binding protein (I-FABP), a marker of enterocyte damage, initially rose in seven of eight participants after 8 weeks (P = 0.039), and then fell below baseline in four of five who continued receiving SBI (P = 0.12). Baseline serum I-FABP levels were negatively correlated with subsequent rise in mucosal CD4 lymphocyte densities (r = -0.74, P = 0.046).ConclusionSBI significantly increases intestinal mucosal CD4 lymphocyte counts, improves duodenal function, and showed evidence of promoting intestinal repair in the setting of HIV enteropathy

    CD45 Phosphatase Inhibits STAT3 Transcription Factor Activity in Myeloid Cells and Promotes Tumor-Associated Macrophage Differentiation

    Get PDF
    Recruitment of monocytic myeloid-derived suppressor cells (MDSCs) and differentiation of tumor-associated macrophages (TAMs) are the major factors contributing to tumor progression and metastasis. We demonstrated that differentiation of TAMs in tumor site from monocytic precursors was controlled by downregulation of the activity of the transcription factor STAT3. Decreased STAT3 activity was caused by hypoxia and affected all myeloid cells but was not observed in tumor cells. Upregulation of CD45 tyrosine phosphatase activity in MDSCs exposed to hypoxia in tumor site was responsible for downregulation of STAT3. This effect was mediated by the disruption of CD45 protein dimerization regulated by sialic acid. Thus, STAT3 has a unique function in the tumor environment in controlling the differentiation of MDSC into TAM, and its regulatory pathway could be a potential target for therapy

    Chronic kidney disease in public renal practices in Queensland, Australia, 2011–2018

    Get PDF
    Aim: To describe adults with (non-dialysis) chronic kidney disease (CKD) in nine public renal practice sites in the Australian state of Queensland. Methods: 7,060 persons were recruited to a CKD Registry in May 2011 and until start of kidney replacement therapy (KRT), death without KRT or June 2018, for a median period of 3.4 years. Results: The cohort comprised 7,060 persons, 52% males, with a median age of 68 yr; 85% had CKD stages 3A to 5, 45.4% were diabetic, 24.6% had diabetic nephropathy, and 51.7% were obese. Younger persons mostly had glomerulonephritis or genetic renal disease, while older persons mostly had diabetic nephropathy, renovascular disease and multiple diagnoses. Proportions of specific renal diagnoses varied >2-fold across sites. Over the first year, eGFR fell in 24% but was stable or improved in 76%. Over follow up, 10% started KRT, at a median age of 62 yr, most with CKD stages 4 and 5 at consent, while 18.8% died without KRT, at a median age of 80 yr. Indigenous people were younger at consent and more often had diabetes and diabetic kidney disease and had higher incidence rates of KRT. Conclusion: The spectrum of characteristics in CKD patients in renal practices is much broader than represented by the minority who ultimately start KRT. Variation in CKD by causes, age, site and Indigenous status, the prevalence of obesity, relative stability of kidney function in many persons over the short term, and differences between those who KRT and die without KRT are all important to explore

    Immature myeloid cells directly contribute to skin tumor development by recruiting IL-17-producing CD4(+) T cells

    Get PDF
    Evidence links chronic inflammation with cancer, but cellular mechanisms involved in this process remain unclear. We have demonstrated that in humans, inflammatory conditions that predispose to development of skin and colon tumors are associated with accumulation in tissues of CD33(+)S100A9(+) cells, the phenotype typical for myeloid-derived suppressor cells in cancer or immature myeloid cells (IMCs) in tumor-free hosts. To identify the direct role of these cells in tumor development, we used S100A9 transgenic mice to create the conditions for topical accumulation of these cells in the skin in the absence of infection or tissue damage. These mice demonstrated accumulation of granulocytic IMCs in the skin upon topical application of 12-O-tetradecanoylphorbol-13-acetate (TPA), resulting in a dramatic increase in the formation of papillomas during epidermal carcinogenesis. The effect of IMCs on tumorigenesis was not associated with immune suppression, but with CCL4 (chemokine [C-C motif] ligand 4)-mediated recruitment of IL-17–producing CD4(+) T cells. This chemokine was released by activated IMCs. Elimination of CD4(+) T cells or blockade of CCL4 or IL-17 abrogated the increase in tumor formation caused by myeloid cells. Thus, this study implicates accumulation of IMCs as an initial step in facilitation of tumor formation, followed by the recruitment of CD4(+) T cells

    Peri-operative red blood cell transfusion in neonates and infants: NEonate and Children audiT of Anaesthesia pRactice IN Europe: A prospective European multicentre observational study

    Get PDF
    BACKGROUND: Little is known about current clinical practice concerning peri-operative red blood cell transfusion in neonates and small infants. Guidelines suggest transfusions based on haemoglobin thresholds ranging from 8.5 to 12 g dl-1, distinguishing between children from birth to day 7 (week 1), from day 8 to day 14 (week 2) or from day 15 (≄week 3) onwards. OBJECTIVE: To observe peri-operative red blood cell transfusion practice according to guidelines in relation to patient outcome. DESIGN: A multicentre observational study. SETTING: The NEonate-Children sTudy of Anaesthesia pRactice IN Europe (NECTARINE) trial recruited patients up to 60 weeks' postmenstrual age undergoing anaesthesia for surgical or diagnostic procedures from 165 centres in 31 European countries between March 2016 and January 2017. PATIENTS: The data included 5609 patients undergoing 6542 procedures. Inclusion criteria was a peri-operative red blood cell transfusion. MAIN OUTCOME MEASURES: The primary endpoint was the haemoglobin level triggering a transfusion for neonates in week 1, week 2 and week 3. Secondary endpoints were transfusion volumes, 'delta haemoglobin' (preprocedure - transfusion-triggering) and 30-day and 90-day morbidity and mortality. RESULTS: Peri-operative red blood cell transfusions were recorded during 447 procedures (6.9%). The median haemoglobin levels triggering a transfusion were 9.6 [IQR 8.7 to 10.9] g dl-1 for neonates in week 1, 9.6 [7.7 to 10.4] g dl-1 in week 2 and 8.0 [7.3 to 9.0] g dl-1 in week 3. The median transfusion volume was 17.1 [11.1 to 26.4] ml kg-1 with a median delta haemoglobin of 1.8 [0.0 to 3.6] g dl-1. Thirty-day morbidity was 47.8% with an overall mortality of 11.3%. CONCLUSIONS: Results indicate lower transfusion-triggering haemoglobin thresholds in clinical practice than suggested by current guidelines. The high morbidity and mortality of this NECTARINE sub-cohort calls for investigative action and evidence-based guidelines addressing peri-operative red blood cell transfusions strategies. TRIAL REGISTRATION: ClinicalTrials.gov, identifier: NCT02350348

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Study of Properties of Cryolite – Lithium Fluoride Melt Containing Silica

    No full text
    The ultimate goal of this study is to examine the feasibility of extracting silicon from silica through electrolysis. The objective of the thesis was to evaluate the physico-chemical properties of a cryolite-lithium fluoride mixture as an electrolyte for the electrolysis process. A study of 86.2wt%Cryolite and13.8wt%Lithium fluoride melt with silica concentration varying from 0-4wt% and temperature range of 900-1000°C was done. Three properties were measured using two sets of experiments: 1) Dissolution Behaviour Determination, to obtain a) solubility limit, b) dissolution rate (mass transfer coefficient) and 2) density using Archimedes’ Principle. The study concluded that solubility and dissolution rate increases with temperature and the addition of LiF to cryolite decreases the solubility limit but increases the rate at which silica dissolves into the melt. With addition of silica, the apparent density of electrolyte first increases up to 2-3wt% and the drops.MAS

    Slag Refining of Aluminum Silicon Alloys for the Purpose of Obtaining Solar Grade Silicon

    No full text
    The need for a reliable, cost effective method to produce solar grade silicon (>6N purity) for photovoltaic cells is imperative in the age of climate change. Boron and phosphorus are used to dope the silicon to make p- and n-junctions and require the strictest control; unfortunately, these are also the most difficult elements to remove during the purification of silicon. The relatively new path of combining of slag treatment and solvent refining is seen as a potential route to large scale and cost-effective refining of silicon. In this study, slag treatment of aluminum-silicon alloys using calcium aluminate slags with varying composition was investigated. Kinetics data was collected and used to calculate the mass transfer coefficient of B and P into the slag; a maximum of 47”m/s and 14”m/s respectively was reported at 35mol% Al2O3. Calculations showed mass transfer of boron was faster than phosphorus due to the smaller ionic radius. It was found that there was a linear correlation between the mass transfer coefficients and superheat of the slag; it is concluded that this is an artifact of the change in both slag and metal compositions as the experiment proceeds. Equilibrium data was used to compare the removal of phosphorus and boron from the alloy, showing significantly better performance for phosphorus removal as it was reduced into the slag as a phosphide ion. Boron removal, as borate ions, was less than ideal because of the very low oxygen potential provided by the slag. The maximum LB and LP reported in this study was 0.38 and 2.17 respectively at 40mol% Al2O3. Also calculated were the slag capacities for borate and phosphide ions. In addition to the fundamental data contributions to the field, a set of criteria were defined for future researchers should they want to pursue slag treatment and solvent refining. Also, a number of parameters that might prove useful when narrowing down potential alloy systems, that would benefit from slag refining, were provided and assessed.Ph.D

    Charge transport properties of cryolite–silica melts

    No full text
    Electrodeposition of silicon from a cryolite based electrolyte at a relatively low temperature is a promising approach to generate high purity silicon. In order to obtain fundamental data pertaining to electrowinning of silicon from cryolite–SiO2 melts, charge transport properties of the melt such as conductivity and electronic and ionic transference numbers were measured. Each property was determined for a range of temperatures and SiO2 contents. It was found that addition of silica to cryolite generally decreases the transport rate of charge carriers. The temperature on the other hand had a positive effect on the electronic and ionic conductivities. The variations arise from the structural changes in the melt, particularly formation of complex ions involving Na, Si, and Al
    • 

    corecore