5,949 research outputs found

    Editorial

    Get PDF

    Finite Temperature Dynamics of the Spin 1/2 Bond Alternating Heisenberg Antiferromagnetic Chain

    Full text link
    We present results for the dynamic structure factor of the S=1/2 bond alternating Heisenberg chain over a large range of frequencies and temperatures. Data are obtained from a numerical evaluation of thermal averages based on the calculation of all eigenvalues and eigenfunctions for chains of up to 20 spins. Interpretation is guided by the exact temperature dependence in the noninteracting dimer limit which remains qualitatively valid up to an interdimer exchange λ≈0.5\lambda \approx 0.5. The temperature induced central peak around zero frequency is clearly identified and aspects of the crossover to spin diffusion in its variation from low to high temperatures are discussed. The one-magnon peak acquires an asymmetric shape with increasing temperature. The two-magnon peak is dominated by the S=1 bound state which remains well defined up to temperatures of the order of J. The variation with temperature and wavevector of the integrated intensity for one and two magnon scattering and of the central peak are discussed.Comment: 8 pages, 8 figure

    EDQNM closure: A homogeneous simulation to support it. A quasi-homogeneous simulation to disprove it

    Get PDF
    It is known that two-point closures are useful tools for understanding and predicting turbulence. Among the various closures, the Eddy Damped Quasi-Normal Markovian (EDQNM) approach is one of the simplest and, at the same time, most useful. Direct numerical simulations (DNS) can provide information that can be used to test the validity of two-point theories. It is the purpose of the present work to use DNS to validate, or improve upon, EDQNM. A case was selected for which EDQNM is known to give satisfactory results: homogeneous isotropic turbulence. Quantities were then evaluated which may be used to test the assumptions of two-point closure approximations: spectral Lagrangian time scales. The goal was to make a careful and refined study to validate the EDQNM theory. A reference case was built for which EDQNM is likely to give poor results. An attempt to generate a quasi-homogeneous turbulent field containing organized structures, was built by artifically injecting them in the initial conditions. The results of direct simulations using such initial conditions are expected to provide a challenge for EDQNM since this kind of field is simple enough to allow comparisons with two-point theories, but at the same time contains coherent structures which cannot be expected to be accurately accounted for by closures based on expansions about Gaussianity

    Electronic, dynamical, and thermal properties of ultra-incompressible superhard rhenium diboride: A combined first-principles and neutron scattering study

    Get PDF
    Rhenium diboride is a recently recognized ultra-incompressible superhard material. Here we report the electronic (e), phonon (p), e-p coupling and thermal properties of ReB2_2 from first-principles density-functional theory (DFT) calculations and neutron scattering measurements. Our calculated elastic constants (c11c_{11} = 641 GPa, c12c_{12} = 159 GPa, c13c_{13} = 128 GPa, c33c_{33} = 1037 GPa, and c44c_{44} = 271 GPa), bulk modulus (BB ≈\approx 350 GPa) and hardness (HH ≈\approx 46 GPa) are in good agreement with the reported experimental data. The calculated phonon density of states (DOS) agrees very well with our neutron vibrational spectroscopy result. Electronic and phonon analysis indicates that the strong covalent B-B and Re-B bonding is the main reason for the super incompressibility and hardness of ReB2_2. The thermal expansion coefficients, calculated within the quasi-harmonic approximation and measured by neutron powder diffraction, are found to be nearly isotropic in aa and cc directions and only slightly larger than that of diamond in terms of magnitude. The excellent agreement found between calculations and experimental measurements indicate that first-principles calculations capture the main interactions in this class of superhard materials, and thus can be used to search, predict, and design new materials with desired properties.Comment: submitted to pr

    Acute Liver Dysfunction Criteria in Critically Ill Children: The PODIUM Consensus Conference

    Full text link
    CONTEXT Develop evidence-based criteria for individual organ dysfunction. OBJECTIVES Evaluate current evidence and develop contemporary consensus criteria for acute liver dysfunction with associated outcomes in critically ill children. DATA SOURCES Electronic searches of PubMed and Embase conducted from January 1992 to January 2020, used medical subject heading terms and text words to characterize acute liver dysfunction and outcomes. STUDY SELECTION Studies evaluating critically ill children with acute liver dysfunction, assessed screening tools, and outcomes were included. Studies evaluating adults, infants ≤36 weeks gestational age, or animals or were reviews/commentaries, case series with sample size ≤10, or non-English language studies were excluded. DATA EXTRACTION Data were abstracted from each eligible study into a data extraction form along with risk of bias assessment by a task force member. RESULTS The systematic review supports criteria for acute liver dysfunction, in the absence of known chronic liver disease, as having onset of symptoms <8 weeks, combined with biochemical evidence of acute liver injury, and liver-based coagulopathy, with hepatic encephalopathy required for an international normalized ratio between 1.5 and 2.0. LIMITATIONS Unable to assess acute-on-chronic liver dysfunction, subjective nature of hepatic encephalopathy, relevant articles missed by reviewers. CONCLUSIONS Proposed criteria identify an infant, child, or adolescent who has reached a clinical threshold where any of the 3 outcomes (alive with native liver, death, or liver transplant) are possible and should prompt an urgent liaison with a recognized pediatric liver transplant center if liver failure is the principal driver of multiple organ dysfunction

    Interferometric scattering enables fluorescence-free electrokinetic trapping of single nanoparticles in free solution

    Full text link
    Anti-Brownian traps confine single particles in free solution by closed-loop feedback forces that directly counteract Brownian motion. The extended-duration measurement of trapped objects allows detailed characterization of photophysical and transport properties, as well as observation of infrequent or rare dynamics. However, this approach has been generally limited to particles that can be tracked by fluorescent emission. Here we present the Interferometric Scattering Anti-Brownian ELectrokinetic trap (ISABEL trap), which uses interferometric scattering rather than fluorescence to monitor particle position. By decoupling the ability to track (and therefore trap) a particle from collection of its spectroscopic data, the ISABEL trap enables confinement and extended study of single particles that do not fluoresce, that only weakly fluoresce, or which exhibit intermittent fluorescence or photobleaching. This new technique significantly expands the range of nanoscale objects that may be investigated at the single-particle level in free solution.Comment: Manuscript and SI; videos available upon reques

    Crystalline phases in chiral ferromagnets: Destabilization of helical order

    Full text link
    In chiral ferromagnets, weak spin-orbit interactions twist the ferromagnetic order into spirals, leading to helical order. We investigate an extended Ginzburg-Landau theory of such systems where the helical order is destabilized in favor of crystalline phases. These crystalline phases are based on periodic arrangements of double-twist cylinders and are strongly reminiscent of blue phases in liquid crystals. We discuss the relevance of such blue phases for the phase diagram of the chiral ferromagnet MnSi.Comment: 6 pages, 5 figures (published version

    How much does teenage parenthood affect long term outcomes? A systematic review.

    Get PDF
    Background: The rates of teenage pregnancy in the UK are relatively high. Although early entry to parenthood can be a positive experience, most studies find large adverse effects on long term outcomes for the mother, child and father, in addition to being costly for the NHS. This is why the government launched its Teenage Pregnancy Strategy in 1999. However, there is growing evidence that teenage pregnancy might be mainly an indicator of disadvantage which is the underlying cause of the negative outcomes. Methods: A systematic literature review was undertaken of studies which used a UK dataset to quantify any long term outcomes of a teenage birth upon the mother, father or child. Studies were included if they used appropriate methods to isolate the causal effect of early parenthood. The databases searched included Medline, Cochrane, EconLit and Web of Science. Results: Six studies were identified by the review; five studies considered the mother’s socioeconomic outcomes, one study reported the child’s outcomes, and no studies met the inclusion criteria for the father’s outcomes. The studies suggested that early motherhood accounts for relatively few of the negative long term socioeconomic outcomes and it is predominantly an indicator of a disadvantaged family background. Conclusion: Limited evidence is available to understand the long term outcomes associated with teenage birth within the UK for the mother, father and child. Current econometric studies suggest that effective interventions to prevent teenage pregnancies will not eradicate the poorer long term socioeconomic outcomes often associated with early motherhood. Thus policy should focus on reducing initial disadvantage in addition to preventing teenage pregnancy. Additional econometric analyses around the mothers’, fathers’ and children’s long term socioeconomic and health-related outcomes would be valuable

    A method of evaluating efficiency during space-suited work in a neutral buoyancy environment

    Get PDF
    The purpose was to investigate efficiency as related to the work transmission and the metabolic cost of various extravehicular activity (EVA) tasks during simulated microgravity (whole body water immersion) using three space suits. Two new prototype space station suits, AX-5 and MKIII, are pressurized at 57.2 kPa and were tested concurrently with the operationally used 29.6 kPa shuttle suit. Four male astronauts were asked to perform a fatigue trial on four upper extremity exercises during which metabolic rate and work output were measured and efficiency was calculated in each suit. The activities were selected to simulate actual EVA tasks. The test article was an underwater dynamometry system to which the astronauts were secured by foot restraints. All metabolic data was acquired, calculated, and stored using a computerized indirect calorimetry system connected to the suit ventilation/gas supply control console. During the efficiency testing, steady state metabolic rate could be evaluated as well as work transmitted to the dynamometer. Mechanical efficiency could then be calculated for each astronaut in each suit performing each movement
    • …
    corecore