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EDQNM closure: "A homogeneous
simulation to support it", "A

quasi-homogeneous simulation to disprove it"

By J.P. Bertoglio 1, K. Squires 2, and J.H. Ferziger 2

It is known that two-point closures are useful tools for understanding and predicting

turbulence. Among the various closures, the Eddy Damped Quasi-Normal Marko-

vian (EDQNM) approach is one of the simplest and, at the same time, most useful.

Nowadays, direct numerical simulations (DNS) can provide information that can be

used to test the validity of two-point theories. It is the purpose of the present work

to use DNS to validate, or improve upon, EDQNM.

In the first part of this work ("a homogeneous simulation to support it") we se-

lected a case for which EDQNM is known to give satisfactory results: homogeneous

isotropic turbulence. We then evaluated quantities which may be used to test the

assumptions of two-point closure approximations: spectral Lagrangian time scales.

Our goal is to make a careful and refined study to validate (and possibly improve)

the EDQNM theory.

The aim of the second part of the work ( "a quasi homogeneous simulation to dis-

prove it") is, on the contrary, a test of EDQNM in a much more difficult situation.

Our purpose is to build a reference case for which EDQNM is likely to give poor

results. We present an attempt to generate a quasi-homogeneous turbulent field

containing "organized" structures, by artificially injecting them in the initial con-

ditions. The results of direct simulations using such initial conditions are expected

to provide a challenge for EDQNM since this kind of field is simple enough to al-

low comparisons with two-point theories, but at the same time contains "coherent"

structures which cannot be expected to be accurately accounted for by closures

based on expansions about Gaussianity.

1. Lagrangian spectral times in isotropic turbulence

1.I The Assumptions of EDQNM

In the EDQNM theory the growth of the third order moments is limited by the

introduction of a damping term in the rate equation for the triple correlations. The

damping coefficient p(k, p, q) is essentially an inverse time scale for the decay of the

triple correlation among the three wave-vectors of a triad. It is generally assumed

that tt(k, p, q) is the sum of the inverse time scales for the individual wavenumbers:

p(k,p,q) + r,(k2 + p2 + q2) = _(k) + 7/(p)+ r/(q)
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and r/(k) is specified phenomenologically.

For flows at Reynolds numbers sufficiently high to contain an inertial subrange,

the damping coefficient must have the form (Orszag 1970)

1 2

_(k) = a e_ks

The form proposed by Pouquet et a1(1975) for an arbitrary energy spectrum:

f0 k 2 _trl(k ) = )t[ p E(p)dp]2 + vk 2

is more commonly used. The value of constant )_ is generally taken to be 0.355.

According to this expression the time scale at wavenumber k depends only on

wavenumbers smaller than k (i.e. only the large eddies influence the damping).

There is however no reason, on physical grounds, to assume that the effect of the

smaller scales can be neglected. Indeed, in order to devise a two-point closure com-

patible with the RNG approach of Yakhot and Orszag, Kraichnan (1987) recently

introduced a model in which it is assumed that only the small scales affect the

damping. In fact, neither type of expression can be completely correct, and dur-

ing his stay at the Center for Turbulence Research (CTR) 1987 summer program

Kraichnan suggested the following possibility of building a time scale that depends

on all scales:

rl(k ) = A,[ p2E(p)dp]½ + (v + v>(k))k 2

where v> (k) is given by :

fk E(p)dp= ,7(k) +

where ,Xa and Sb are constants. It can be shown that these two new constants must

satisfy the following relation:

)t, = )_ - 2(1 - log2)_ -_

in order that the new form reduces to the old one in the case of an inertial range.

During the CTR Summer Program, we tested the new form for the damping by

introducing it into the EDQNM computation code written by Orlandi. We found

no significant differences from the results obtained using the classical form, as long

as )_a/)_ remains larger than 0.5. We noticed a small effect on the skewness, (see

figure 1); the other quantities remain unaffected.
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FIGURE 1. Evolution of the skewness in time. Comparison of EDQNM results

obtained with different formulations for the damping. (a) damping given by Pouquet

et al (1975); (b) damping suggested by Kraichnan (with)_a/_ : .5).

1.2 Evaluation of 7l(k ) using direct numerical simulation.

In order to test the expression for r/(k) used in EDQNM against actual turbulence

time scales, we have to deduce a spectral time scale from the simulation results.

Comparisons between EDQNM and the Direct Interaction Approximation suggest

evaluating the time scale using two-time correlations of the velocity field. The

proper time scale must be invariant under an arbitrary Galilean transformation

since the triple correlations must not be affected by convective effects. Tile time

scale must therefore be a Lagrangian time scale derived from Lagrangian two-time

correlations, as suggested by LHDIA. For practical reasons, we used the two-time

correlations introduced by Kaneda (1981):

Rij(x,t'lt;x',t'lt') =

where Ui(X, t'lt) is the velocity at time t of the fluid particle whose trajectory passes

through x at time t'. One could also use the two-time correlations defined by

Kraichnan in the LHDIA or ALHDIA theories, or work with the response tensor,

but the evaluation of Kaneda's correlations is simpler.

Spectral information is obtained by Fourier transforming with respect to the

initial position of the particles.

To deduce the Lagrangian correlations from the results of a DNS, one has to
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follow particle trajectories. This is done using Squires' code, which was developed

for the study of particle dispersion.

1.3 Results

Two direct numerical simulations of homogeneous isotropic turbulence were used.

Both used Rogallo's code. In the first case, a 64x64x64 grid was used. In the second,

a 128x128x128 grid was introduced in order to increase the Reynolds number.

We present here only a limited number of results. For a more detailed study see

the paper by Lee, Squires, Bertoglio, and Ferziger (1987). A study preliminary to

this work was performed in Lyon using Large Eddy Simulation on a 16x16x16 grid.

In the DNS, it would have been desirable to place particles at each point of the

computational grid, but doing so would have increased the cost of the computation

prohibitively. The number of markers is therefore much smaller than the number

of grid points. Marker placements were of two types. First, to ensure accurate

large scale statistics, markers were placed on a 16x16x16 equally spaced grid. This

provides a set of widely spaced particles. To obtain data on the small scales, a

second set, consisting of 8x8 lines of 64 particles was used.

In figure 2a, the Lagrangian correlations obtained from the 128x128x128 run

are given as functions of the dimensional separation time t - t'. As expected, the

correlations corresponding to large wavenumbers decrease rapidly.

The correlations can also be plotted as functions of the time normalized by the

candidate time scale; an accurate time scale should collapse the results to a single

curve, figure 2b shows that, when the classical time scale is used, the collapse is

good at high wavenumbers but not as good at low wavenumbers. When Kraich-

nan's expression is used (with k,a = A/2), the collapse is slightly improved at low

wavenumbers, and remains acceptable at high wavenumbers (figure 2c).

1._ Problems and futuT_c orientations

The major problem encountered is tim lack of sufficient sample at high wavenum-

bers. The number of particles used (8x8x64) was probably not large enough to allow

conclusive results concerning the highest wavenumbers in the simulation.

In the comparison between Lagrangian and Eulerian correlations, another prob-

lem appears. As expected, for short times and at high k, the Eulerian correlation

decreases faster than the Lagrangian one; however, for long times, the trend appears

to be reversed. In fact , for large values of the separation time, the significance of

Fourier transforming with respect to the initial positions of the markers must be

questioned. One could try to use another definition for the spectral time scale in this

case. However, we believe that information deduced from the small time behavior

is sufficient for the purposes of our study.

It would be interesting to extend the present study to anisotropic flows, as almost

no information is available about the effects of mean velocity gradients or anisotropy

on the damping. The easiest anisotropic case to investigate would be turbulence

submitted to uniform solid body rotation since, in this case, steady coordinates (in

the rotating frame) can be used. Due to the lack of time, we could not investigate

this case during the summer program. It should be the subject of future work.
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FIGURE 2. Two-time Lagrangian correlations as a function of the time separa-

tion at different values of the wavenumber. (a) un-normalized time separation, (b)

time separation normalized using Pouquet's formula, (c) time separation normalized

using Kraichnan's formula.
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In the case of isotropic fields, interest in studying the damping term is quite lim-

ited, since it is known that the existing formulations lead to satisfactory predictions

of the decay of isotropic turbulence. This is, to a certain extent, true, (and is the

reason why our goal is the study of anisotropic turbulence). However we believe

that, even though limited to isotropic turbulence, the results of the present study

are valuable. In the study of homogeneous isotropic turbulence containing a gap or

a peak in the spectrum, for example, the accuracy of the expression for the damping

is of greater importance. Since the choice of the damping term has an important

effect on the "localness" of the triadic interaction in k space, a better expression

for r/ could provide interesting information concerning localized interactions and,

possibly, insight about the effect of the presence of coherent structures on the en-

ergy cascade (see Kraichnan, 1987). Furthermore, we believe that, in large-eddy

simulation, the influence of the subgrid terms on the Lagrangian time scales should

be investigated.

2. A quasi-homogeneous field containing "organized" structures

2._ Aim of the study and initial conditions.

The first part of tile work was devoted to the study of a case in which EDQNM

is known to perform well: isotropic turbulence. The aim of the second part is

significantly different. It consists of an attempt to simulate a case which, although

simple enough to be handled by closures with reasonable computation times, is

likely to provide a severe test of EDQNM.

Our goal is to get insight into the ability of two-point closures to account for

situations in which coherent structures are present. How are the predictions of

EDQNM affected by the presence of organized eddies?

The existence of coherent structures in wall bounded flows is well known. Wall

bounded flows would, however, require a large amount of computational effort to be

predicted by EDQNM, and at least at first, simpler situations have to be studied.

The basic idea of the present work is therefore to artificially inject coherent struc-

tures into a "quasi-homogeneous" turbulent field (quasi-homogeneous meaning pe-

riodic rather than homogeneous).

During the summer program we tried to define initial conditions for a simulation

of a flow containing "coherent" structures in a periodic cubic box. The results of

such a simulation could provide reference data to test EDQNM.

In an attempt to create such a turbulent field, an experiment has been devised in

Lyon. This experiment consists of generating organized structures in grid turbulence

by using a grid equipped with small rotating propellers. One hundred counter-

rotating propellers are used in this experiment (one at each node of the grid); see

figure 3. The results (see Michard et al, 1986) display interesting behavior, in

particular, a spike appears in the spectrum; see figure 4.

Large Eddy Simulations on 16x16x16 grids, run in Lyon, using initial conditions

containing four vortices embedded in a random field, show that some experimental

tendencies can be predicted, and, to a certain extent, understood (for example,

the existence of a periodic distribution of anisotropy). However, due to the lack
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FIGURE 3. Grid equipped with propellers (Michard et a1,1986). 

Hz 

FIGURE 4. Experinient.al one-dimensional energy spect,rum of Michard et a1 (1986). 

of resolution of this coarse grid, it has not been possible to inject a peak in the 
spectrum in the flow direction. 

The work done at CTR consists in building an initial field that contains such a 
peak. We used a 64x64~64 mesh. A few simulation runs were started to test the 
initial field. After several attempts, it was decided to define the initial conditions 
in terms of the vorticity field. In the 64x64~64 box, four vortex-containing cells, 
corresponding to the wakes of four propellers, were defined. In each cell three 
vortices are introduced, centered on helical lines corresponding to the wakes of the 
three blades of each propeller. In order to ensure zero circulation in each cell, 
another vortex was introduced on the centerline. A representation of this initial 
field is given in figure 5. 

This field was embedded in a random fluctuating field. For this random field, we 
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FIGURE 5 .  Representation of the initial “coherent structures” used in the simu- 
lation. These are t,he idealized wakes of the counter-rotating propellers shown in 
figure 3. 

FIGURE 6. 
averaged over the entire 21 - 23 space). 

Initial one dimensional spectra (vortex field + isot,ropic turbulence, 
The mean flow is in the 22 direction. 

Ell,  - - - -  E227 - - E 3 3 *  

used the one created by Lee & Reynolds (1985) with N = 64, and Re = 51.13. 
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The initial spectrum, in the k2 direction, is given in figure 6. A small peak

appears at the wavenumber corresponding to the blade passing frequency.

_._ Results and directions for future work.

The peak in figure 6 is relatively weak, although the energy contained in the

vorticity field is not small compared to the total energy of the field. However, it

must be pointed out that the plotted spectrum is an average over the X,Z plane,

and one should investigate the behavior of the one-dimensional spectra obtained at

a given point in the X,Z plane.

It is worth noting that the peak appears at the blade passing frequency (due to

the construction of the initial conditions) whereas the experimental spike is found at

the rotation frequency of the propellers. During the simulation, the computed peak

evolved only slightly and no subharmonic spike appeared at the rotation frequency.

The simulations were, however, limited to one hundred time steps due to time

constraints; longer runs are necessary to see the expected behavior.

Another experimental feature is that there is an axisymmetric contraction down-

stream of the grid. This axisymmetric contraction was introduced to amplify the

intensity of the peak. Without it, the peak would die immediately; in fact, the am-

plification was much stronger than expected. The axisymmetric contraction should

probably be included in the simulation. It is hoped that this work will be completed

in the near future. It could provide a challenge for EDQNM, as preliminary studies

show that the experimental decay of the peak is overpredicted by the closure. The

existence of a reference field deduced from the simulation would be highly valu-

able since precise analysis of the mechanism occurring in tile experiment is hard to

deduce from the measured quantities.
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