54 research outputs found

    Genome analysis of Clostridium difficile PCR ribotype 014 lineage in Australian pigs and humans reveals a diverse genetic repertoire and signatures of long-range interspecies transmission

    Get PDF
    Clostridium difficile PCR ribotype (RT) 014 is well-established in both human and porcine populations in Australia, raising the possibility that C. difficile infection (CDI) may have a zoonotic or foodborne etiology. Here, whole genome sequencing and high-resolution core genome phylogenetics were performed on a contemporaneous collection of 40 Australian RT014 isolates of human and porcine origin. Phylogenies based on MLST (7 loci, STs 2, 13, and 49) and core orthologous genes (1260 loci) showed clustering of human and porcine strains indicative of very recent shared ancestry. Core genome single nucleotide variant (SNV) analysis found 42% of human strains showed a clonal relationship (separated by ≤2 SNVs in their core genome) with one or more porcine strains, consistent with recent inter-host transmission. Clones were spread over a vast geographic area with 50% of the human cases occurring without recent healthcare exposure. These findings suggest a persistent community reservoir with long-range dissemination, potentially due to agricultural recycling of piggery effluent. We also provide the first pan-genome analysis for this lineage, characterizing its resistome, prophage content, and in silico virulence potential. The RT014 is defined by a large “open” pan-genome (7587 genes) comprising a core genome of 2296 genes (30.3% of the total gene repertoire) and an accessory genome of 5291 genes. Antimicrobial resistance genotypes and phenotypes varied across host populations and ST lineages and were characterized by resistance to tetracycline [tetM, tetA(P), tetB(P) and tetW], clindamycin/erythromycin (ermB), and aminoglycosides (aph3-III-Sat4A-ant6-Ia). Resistance was mediated by clinically important mobile genetic elements, most notably Tn6194 (harboring ermB) and a novel variant of Tn5397 (harboring tetM). Numerous clinically important prophages (Siphoviridae and Myoviridae) were identified as well as an uncommon accessory gene regulator locus (agr3). Conservation in the pathogenicity locus and S-layer correlated with ST affiliation, further extending the concept of clonal C. difficile lineages. This study provides novel insights on the genetic variability and strain relatedness of C. difficile RT014, a lineage of emerging One Health importance. Ongoing molecular and genomic surveillance of strains in humans, animals, food, and the environment is imperative to identify opportunities to reduce the overall CDI burden

    Диференційна діагностика жінок з полікістозною та мультіфолікулярною стукрурою яєчників

    Get PDF
    Синдром полікістозних яєчників (СПКЯ) є найчастішою ендокринопатією у жінок репродуктивного віку як в Україні ,так і за кордоном і становить гетерогенну групу порушень із широкою клінічною і біохімічною варіабельністю. Частота СПКЯ в популяції складає від 4 до 15 % і зустрічається однаково часто в різних етнічних групах: в Україні – від 0,6 до 11 %, у країнах ближнього зарубіжжя -1,8-11%, в Європі - 15-20%, в США - 6-10%.Більшість пацієнток репродуктивного віку з СПКЯ страждають на безпліддя, частота якого складає 35-74%

    Plasma matrix metalloproteinases in neonates having surgery for congenital heart disease

    Get PDF
    During cardiopulmonary-bypass matrix-metalloproteinases released may contribute to ventricular dysfunction. This study was to determine plasma matrix-metalloproteinases in neonates after cardiopulmonary-bypass and their relation to post-operative course. A prospective observational study included 18 neonates having cardiac surgery. Plasma matrix-metalloproteinases-2 and 9 activities were measured by gelatin-zymography pre-operatively, on starting cardiopulmonarybypass, 7–8 min after aortic cross-clamp release, and 1h, 4h, 24h, and 3d after cardiopulmonary-bypass. Plasma concentrations of their tissue inhibitors 1 and 2 were determined by enzyme-linked immunosorbent assay. Cardiac function was assessed by serial echocardiography. Paired t-tests and Wilcoxon tests were used to assess temporal changes, and linear correlation with simultaneous clinical and cardiac function parameters were assessed using Pearson's product-moment correlation coefficient. Plasma matrix-metalloproteinases activities and their tissue inhibitor concentrations decreased during cardiopulmonary-bypass. Matrix-metalloproteinase-2 plasma activity increased progressively starting 1h after cardiopulmonarybypass and returned to pre-operative levels at 24h. Matrix-metalloproteinase-9 plasma activity increased significantly after release of aortic cross-clamp, peaked 7–8min later, and returned to baseline at 24h. Plasma tissueinhibitor 1 and 2 concentrations increased 1h after cardiopulmonary-bypass. Cardiac function improved from 4h to 3d after surgery (p<0.05). There was no evidence of significant correlations between matrix-metalloproteinases or their inhibitors and cardiac function, inotrope scores, organ dysfunction scores, ventilation days, or hospital days. The temporal profile of plasma matrix-metalloproteinases and their inhibitors after cardiopulmonary-bypass in neonates are similar to adults. In neonates, further study should determine whether circulating matrix-metalloproteinases are useful biomarkers of disease activity locally within the myocardium, and hence of clinical outcomes

    Effects of sleep deprivation on neural functioning: an integrative review

    Get PDF
    Sleep deprivation has a broad variety of effects on human performance and neural functioning that manifest themselves at different levels of description. On a macroscopic level, sleep deprivation mainly affects executive functions, especially in novel tasks. Macroscopic and mesoscopic effects of sleep deprivation on brain activity include reduced cortical responsiveness to incoming stimuli, reflecting reduced attention. On a microscopic level, sleep deprivation is associated with increased levels of adenosine, a neuromodulator that has a general inhibitory effect on neural activity. The inhibition of cholinergic nuclei appears particularly relevant, as the associated decrease in cortical acetylcholine seems to cause effects of sleep deprivation on macroscopic brain activity. In general, however, the relationships between the neural effects of sleep deprivation across observation scales are poorly understood and uncovering these relationships should be a primary target in future research

    Nationwide surveillance study of Clostridium difficile in Australian neonatal pigs shows high prevalence and heterogeneity of PCR ribotypes

    No full text
    Clostridium difficile is an important enteric pathogen of humans and the cause of diarrhea and enteritis in neonatal pigs. Outside Australia, prevalence in piglets can be up to 73%, with a single PCR ribotype (RT), 078, predominating. We investigated the prevalence and genotype of C. difficile in Australian pig herds. Rectal swabs (n=229) were collected from piglets aged < 7 days from 21 farms across Australia. Selective culture for C. difficile was performed and isolates characterized by PCR for toxin genes and PCR ribotyping. C. difficile was isolated from 52% of samples by direct culture on chromogenic agar and 67% by enrichment culture (P=0.001). No association between C. difficile recovery or genotype and diarrheic status of either farm or piglets was found. The majority (87%; 130/154) of isolates were toxigenic. Typing revealed 23 different RTs, several of which are known to cause disease in humans, including RT014, which was isolated most commonly (23%; 36/154). RT078 was not detected. This study shows that colonization of Australian neonatal piglets with C. difficile is widespread in the herds sampled

    Community-acquired Clostridium difficile infection and Australian food animals

    No full text
    Clostridium difficile is an anaerobic Gram positive spore-forming bacterium, the leading cause of infectious diarrhoea (C. difficile infection; CDI) in hospitalised humans. The assumption that CDI is primarily a hospital-acquired infection is being questioned. Community-acquired CDI (CA-CDI) is increasing particularly in groups previously considered at low risk. In Australia, CA-CDI rates doubled during 2011 and increased by 24% between 2011 and 2012. Two potentially high-risk practices in Australian food animal husbandry may present a risk for CA-CDI: slaughtering of neonatal animals for food, and effluent recycling to agriculture

    Laboratory detection of Clostridium difficile in piglets in Australia

    No full text
    Clostridium difficile is a well-known enteric pathogen of humans and the causative agent of high-morbidity enteritis in piglets aged 1 to 7 days. C. difficile prevalence in Australian piglets is as high as 70%. The current diagnostic assays have been validated only for human infections, and there are no published studies assessing their performance in Australian piglets. We evaluated the suitability of five assays for detecting C. difficile in 157 specimens of piglet feces. The assays included a loop-mediated isothermal amplification (LMIA)-PCR for tcdA (illumigene C. difficile; Meridian), a real-time PCR for tcdB (GeneOhm Cdiff; Becton Dickinson), two-component enzyme immunoassays (EIA) for C. difficile glutamate dehydrogenase (GDH) (EIA-GDH) and TcdA/TcdB (EIA-TcdA/TcdB) (C. diff Quik Chek; Alere), and direct culture (DC) (C. difficile chromID agar; bioMérieux). The assays for detection of the organism were compared against enrichment culture (EC), and assays for detection of toxins/toxin genes were compared against EC followed by PCR for toxin genes (toxigenic EC [TEC]). The recovery of C. difficile by EC was 39.5% (n = 62/157), and TEC revealed that 58.1% (n = 36/62) of isolates were positive for at least one toxin gene (tcdA/tcdB). Compared with those for EC/TEC, the sensitivities, specificities, positive predictive values, and negative predictive values were, respectively, as follows: DC, 91.9, 100.0, 100.0, and 95.0%; EIA-GDH, 41.9, 92.6, 78.8, and 71.0%; EIA-TcdA/TcdB, 5.6, 99.2, 66.7, and 77.9%; real-time PCR, 42.9, 96.7, 78.9, and 85.4% and LMIA-PCR, 25.0, 95.9, 64.3, and 81.1%. The performance of the molecular methods was poor, suggesting that the current commercially available assays for diagnosis of C. difficile in humans are not suitable for use in piglets. C. difficile recovery by the DC provides a cost-effective alternative
    corecore