94 research outputs found

    Immunomodulatory effects of microbiota-derived metabolites at the crossroad of neurodegenerative diseases and viral infection: network-based bioinformatics insights

    Get PDF
    Bidirectional cross-talk between commensal microbiota and the immune system is essential for the regulation of immune responses and the formation of immunological memory. Perturbations of microbiome-immune system interactions can lead to dysregulated immune responses against invading pathogens and/or to the loss of self-tolerance, leading to systemic inflammation and genesis of several immune-mediated pathologies, including neurodegeneration. In this paper, we first investigated the contribution of the immunomodulatory effects of microbiota (bacteria and fungi) in shaping immune responses and influencing the formation of immunological memory cells using a network-based bioinformatics approach. In addition, we investigated the possible role of microbiota-host-immune system interactions and of microbiota-virus interactions in a group of neurodegenerative diseases (NDs): Amyotrophic Lateral Sclerosis (ALS), Multiple Sclerosis (MS), Parkinson’s disease (PD) and Alzheimer’s disease (AD). Our analysis highlighted various aspects of the innate and adaptive immune response systems that can be modulated by microbiota, including the activation and maturation of microglia which are implicated in the development of NDs. It also led to the identification of specific microbiota components which might be able to influence immune system processes (ISPs) involved in the pathogenesis of NDs. In addition, it indicated that the impact of microbiota-derived metabolites in influencing disease-associated ISPs, is higher in MS disease, than in AD, PD and ALS suggesting a more important role of microbiota mediated-immune effects in MS

    Updated Field Synopsis and Systematic Meta-Analyses of Genetic Association Studies in Cutaneous Melanoma: The MelGene Database

    Get PDF
    We updated a field synopsis of genetic associations of cutaneous melanoma (CM) by systematically retrieving and combining data from all studies in the field published as of August 31, 2013. Data were available from 197 studies, which included 83,343 CM cases and 187,809 controls and reported on 1,126 polymorphisms in 289 different genes. Random-effects meta-analyses of 81 eligible polymorphisms evaluated in >4 data sets confirmed 20 single-nucleotide polymorphisms across 10 loci (TYR, AFG3L1P, CDK10, MYH7B, SLC45A2, MTAP, ATM, CLPTM1L, FTO, and CASP8) that have previously been published with genome-wide significant evidence for association (P<5 × 10−8) with CM risk, with certain variants possibly functioning as proxies of already tagged genes. Four other loci (MITF, CCND1, MX2, and PLA2G6) were also significantly associated with 5 × 10−8<P<1 × 10−3. In supplementary meta-analyses derived from genome-wide association studies, one additional locus located 11 kb upstream of ARNT (chromosome 1q21) showed genome-wide statistical significance with CM. Our approach serves as a useful model in analyzing and integrating the reported germline alterations involved in CM

    The Metamorphosis of the Hero: Principles, Processes, and Purpose

    Get PDF
    This article examines the phenomenon of heroic metamorphosis: what it is, how it unfolds, and why it is important. First, we describe six types of transformation of the hero: mental, moral, emotional, spiritual, physical, and motivational. We then argue that these metamorphoses serve five functions: they foster developmental growth, promote healing, cultivate social unity, advance society, and deepen cosmic understanding. Internal and external sources of transformation are discussed, with emphasis on the importance of mentorship in producing metamorphic growth. Next we describe the three arcs of heroic transformation: egocentricity to sociocentricity, dependence to autonomy, and stagnation to growth. We then discuss three activities that promote heroic metamorphosis as well as those that hinder it. Implications for research on human growth and development are discussed

    Low-lying level structure of 56^{56}Cu and its implications on the rp process

    Full text link
    The low-lying energy levels of proton-rich 56^{56}Cu have been extracted using in-beam Îł\gamma-ray spectroscopy with the state-of-the-art Îł\gamma-ray tracking array GRETINA in conjunction with the S800 spectrograph at the National Superconducting Cyclotron Laboratory at Michigan State University. Excited states in 56^{56}Cu serve as resonances in the 55^{55}Ni(p,Îł\gamma)56^{56}Cu reaction, which is a part of the rp-process in type I x-ray bursts. To resolve existing ambiguities in the reaction Q-value, a more localized IMME mass fit is used resulting in Q=639±82Q=639\pm82~keV. We derive the first experimentally-constrained thermonuclear reaction rate for 55^{55}Ni(p,Îł\gamma)56^{56}Cu. We find that, with this new rate, the rp-process may bypass the 56^{56}Ni waiting point via the 55^{55}Ni(p,Îł\gamma) reaction for typical x-ray burst conditions with a branching of up to ∌\sim40%\%. We also identify additional nuclear physics uncertainties that need to be addressed before drawing final conclusions about the rp-process reaction flow in the 56^{56}Ni region.Comment: 8 pages, accepted for Phys. Rev.

    Putative antimicrobial peptides within bacterial proteomes affect bacterial predominance: a network analysis perspective

    Get PDF
    The predominance of bacterial taxa in the gut, was examined in view of the putative antimicrobial peptide sequences (AMPs) within their proteomes. The working assumption was that compatible bacteria would share homology and thus immunity to their putative AMPs, while competing taxa would have dissimilarities in their proteome-hidden AMPs. A network–based method (“Bacterial Wars”) was developed to handle sequence similarities of predicted AMPs among UniProt-derived protein sequences from different bacterial taxa, while a resulting parameter (“Die” score) suggested which taxa would prevail in a defined microbiome. T he working hypothesis was examined by correlating the calculated Die scores, to the abundance of bacterial taxa from gut microbiomes from different states of health and disease. Eleven publicly available 16S rRNA datasets and a dataset from a full shotgun metagenomics served for the analysis. The overall conclusion was that AMPs encrypted within bacterial proteomes affected the predominance of bacterial taxa in chemospheres

    Use of wild bird surveillance, human case data and GIS spatial analysis for predicting spatial distributions of West Nile Virus in Greece

    Get PDF
    West Nile Virus (WNV) is the causative agent of a vector-borne, zoonotic disease with a worldwide distribution. Recent expansion and introduction of WNV into new areas, including southern Europe, has been associated with severe disease in humans and equids, and has increased concerns regarding the need to prevent and control future WNV outbreaks. Since 2010, 524 confirmed human cases of the disease have been reported in Greece with greater than 10% mortality. Infected mosquitoes, wild birds, equids, and chickens have been detected and associated with human disease. The aim of our study was to establish a monitoring system with wild birds and reported human cases data using Geographical Information System (GIS). Potential distribution of WNV was modelled by combining wild bird serological surveillance data with environmental factors (e.g. elevation, slope, land use, vegetation density, temperature, precipitation indices, and population density). Local factors including areas of low altitude and proximity to water were important predictors of appearance of both human and wild bird cases (Odds Ratio = 1,001 95%CI = 0,723–1,386). Using GIS analysis, the identified risk factors were applied across Greece identifying the northern part of Greece (Macedonia, Thrace) western Greece and a number of Greek islands as being at highest risk of future outbreaks. The results of the analysis were evaluated and confirmed using the 161 reported human cases of the 2012 outbreak predicting correctly (Odds = 130/31 = 4,194 95%CI = 2,841–6,189) and more areas were identified for potential dispersion in the following years. Our approach verified that WNV risk can be modelled in a fast cost-effective way indicating high risk areas where prevention measures should be implemented in order to reduce the disease incidence

    A guide to multi-omics data collection and integration for translational medicine

    No full text
    The emerging high-throughput technologies have led to the shift in the design of translational medicine projects towards collecting multi-omics patient samples and, consequently, their integrated analysis. However, the complexity of integrating these datasets has triggered new questions regarding the appropriateness of the available computational methods. Currently, there is no clear consensus on the best combination of omics to include and the data integration methodologies required for their analysis. This article aims to guide the design of multi-omics studies in the field of translational medicine regarding the types of omics and the integration method to choose. We review articles that perform the integration of multiple omics measurements from patient samples. We identify five objectives in translational medicine applications: (i) detect disease-associated molecular patterns, (ii) subtype identification, (iii) diagnosis/prognosis, (iv) drug response prediction, and (v) understand regulatory processes. We describe common trends in the selection of omic types combined for different objectives and diseases. To guide the choice of data integration tools, we group them into the scientific objectives they aim to address. We describe the main computational methods adopted to achieve these objectives and present examples of tools. We compare tools based on how they deal with the computational challenges of data integration and comment on how they perform against predefined objective-specific evaluation criteria. Finally, we discuss examples of tools for downstream analysis and further extraction of novel insights from multi-omics datasets

    Systems Bioinformatics Reveals Possible Relationship between COVID-19 and the Development of Neurological Diseases and Neuropsychiatric Disorders

    No full text
    Coronavirus Disease 2019 (COVID-19) is associated with increased incidence of neurological diseases and neuropsychiatric disorders after infection, but how it contributes to their development remains under investigation. Here, we investigate the possible relationship between COVID-19 and the development of ten neurological disorders and three neuropsychiatric disorders by exploring two pathological mechanisms: (i) dysregulation of host biological processes via virus&ndash;host protein&ndash;protein interactions (PPIs), and (ii) autoreactivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epitopes with host &ldquo;self&rdquo; proteins via molecular mimicry. We also identify potential genetic risk factors which in combination with SARS-CoV-2 infection might lead to disease development. Our analysis indicated that neurodegenerative diseases (NDs) have a higher number of disease-associated biological processes that can be modulated by SARS-CoV-2 via virus&ndash;host PPIs than neuropsychiatric disorders. The sequence similarity analysis indicated the presence of several matching 5-mer and/or 6-mer linear motifs between SARS-CoV-2 epitopes with autoreactive epitopes found in Alzheimer&rsquo;s Disease (AD), Parkinson&rsquo;s Disease (PD), Myasthenia Gravis (MG) and Multiple Sclerosis (MS). The results include autoreactive epitopes that recognize amyloid-beta precursor protein (APP), microtubule-associated protein tau (MAPT), acetylcholine receptors, glial fibrillary acidic protein (GFAP), neurofilament light polypeptide (NfL) and major myelin proteins. Altogether, our results suggest that there might be an increased risk for the development of NDs after COVID-19 both via autoreactivity and virus&ndash;host PPIs
    • 

    corecore