733 research outputs found

    Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe

    Get PDF
    We present a new multispectral approach for observing lowermost tropospheric ozone from space by synergism of atmospheric radiances in the thermal infrared (TIR) observed by IASI (Infrared Atmospheric Sounding Interferometer) and earth reflectances in the ultraviolet (UV) measured by GOME-2 (Global Ozone Monitoring Experiment-2). Both instruments are onboard the series of MetOp satellites (in orbit since 2006 and expected until 2022) and their scanning capabilities offer global coverage every day, with a relatively fine ground pixel resolution (12 km-diameter pixels spaced by 25 km for IASI at nadir). Our technique uses altitude-dependent Tikhonov–Phillips-type constraints, which optimize sensitivity to lower tropospheric ozone. It integrates the VLIDORT (Vector Linearized Discrete Ordinate Radiative Transfer) and KOPRA (Karlsruhe Optimized and Precise Radiative transfer Algorithm) radiative transfer codes for simulating UV reflectance and TIR radiance, respectively. We have used our method to analyse real observations over Europe during an ozone pollution episode in the summer of 2009. The results show that the multispectral synergism of IASI (TIR) and GOME-2 (UV) enables the observation of the spatial distribution of ozone plumes in the lowermost troposphere (LMT, from the surface up to 3 km a.s.l., above sea level), in good agreement with the CHIMERE regional chemistry-transport model. In this case study, when high ozone concentrations extend vertically above 3 km a.s.l., they are similarly observed over land by both the multispectral and IASI retrievals. On the other hand, ozone plumes located below 3 km a.s.l. are only clearly depicted by the multispectral retrieval (both over land and over ocean). This is achieved by a clear enhancement of sensitivity to ozone in the lowest atmospheric layers. The multispectral sensitivity in the LMT peaks at 2 to 2.5 km a.s.l. over land, while sensitivity for IASI or GOME-2 only peaks at 3 to 4 km a.s.l. at lowest (above the LMT). The degrees of freedom for the multispectral retrieval increase by 0.1 (40% in relative terms) with respect to IASI only retrievals for the LMT. Validations with ozonesondes (over Europe during summer 2009) show that our synergetic approach for combining IASI (TIR) and GOME-2 (UV) measurements retrieves lowermost tropospheric ozone with a mean bias of 1% and a precision of 16%, when smoothing by the retrieval vertical sensitivity (1% mean bias and 21% precision for direct comparisons)

    Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe

    Get PDF
    We present a new multispectral approach for observing lowermost tropospheric ozone from space by synergism of atmospheric radiances in the thermal infrared (TIR) observed by IASI (Infrared Atmospheric Sounding Interferometer) and earth reflectances in the ultraviolet (UV) measured by GOME-2 (Global Ozone Monitoring Experiment-2). Both instruments are onboard the series of MetOp satellites (in orbit since 2006 and expected until 2022) and their scanning capabilities offer global coverage every day, with a relatively fine ground pixel resolution (12 km-diameter pixels spaced by 25 km for IASI at nadir). Our technique uses altitude-dependent Tikhonov–Phillips-type constraints, which optimize sensitivity to lower tropospheric ozone. It integrates the VLIDORT (Vector Linearized Discrete Ordinate Radiative Transfer) and KOPRA (Karlsruhe Optimized and Precise Radiative transfer Algorithm) radiative transfer codes for simulating UV reflectance and TIR radiance, respectively. We have used our method to analyse real observations over Europe during an ozone pollution episode in the summer of 2009. The results show that the multispectral synergism of IASI (TIR) and GOME-2 (UV) enables the observation of the spatial distribution of ozone plumes in the lowermost troposphere (LMT, from the surface up to 3 km a.s.l., above sea level), in good agreement with the CHIMERE regional chemistry-transport model. In this case study, when high ozone concentrations extend vertically above 3 km a.s.l., they are similarly observed over land by both the multispectral and IASI retrievals. On the other hand, ozone plumes located below 3 km a.s.l. are only clearly depicted by the multispectral retrieval (both over land and over ocean). This is achieved by a clear enhancement of sensitivity to ozone in the lowest atmospheric layers. The multispectral sensitivity in the LMT peaks at 2 to 2.5 km a.s.l. over land, while sensitivity for IASI or GOME-2 only peaks at 3 to 4 km a.s.l. at lowest (above the LMT). The degrees of freedom for the multispectral retrieval increase by 0.1 (40%in relative terms) with respect to IASI only retrievals for the LMT. Validations with ozonesondes (over Europe during summer 2009) show that our synergetic approach for combining IASI (TIR) and GOME-2 (UV) measurements retrieves lowermost tropospheric ozone with a mean bias of 1% and a precision of 16 %, when smoothing by the retrieval vertical sensitivity (1% mean bias and 21% precision for direct comparisons)

    One-shot genitalia are not an evolutionary dead end - Regained male polygamy in a sperm limited spider species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Monogynous mating systems with extremely low male mating rates have several independent evolutionary origins and are associated with drastic adaptations involving self-sacrifice, one-shot genitalia, genital damage, and termination of spermatogenesis immediately after maturation. The combination of such extreme traits likely restricts evolutionary potential perhaps up to the point of making low male mating rates irreversible and hence may constitute an evolutionary dead end. Here, we explore the case of a reversion to multiple mating from monogynous ancestry in golden orb-web spiders, <it>Nephila senegalensis</it>.</p> <p>Results</p> <p>Male multiple mating is regained by the loss of genital damage and sexual cannibalism but spermatogenesis is terminated with maturation, restricting males to a single loading of their secondary mating organs and a fixed supply of sperm. However, males re-use their mating organs and by experimentally mating males to many females, we show that the sperm supply is divided between copulations without reloading the pedipalps.</p> <p>Conclusion</p> <p>By portioning their precious sperm supply, males achieve an average mating rate of four females which effectively doubles the maximal mating rate of their ancestors. A heritage of one-shot genitalia does not completely restrict the potential to increase mating rates in <it>Nephila </it>although an upper limit is defined by the available sperm load. Future studies should now investigate how males use this potential in the field and identify selection pressures responsible for a reversal from monogynous to polygynous mating strategies.</p

    Surface structure and frictional properties of the skin of the Amazon tree boa Corallus hortulanus (Squamata, Boidae)

    Get PDF
    The legless locomotion of snakes requires specific adaptations of their ventral scales to maintain friction force in different directions. The skin microornamentation of the snake Corallus hortulanus was studied by means of scanning electron microscopy and the friction properties of the skin were tested on substrates of different roughness. Skin samples from various parts of the body (dorsal, lateral, ventral) were compared. Dorsal and lateral scales showed similar, net-like microornamentation and similar friction coefficients. Average friction coefficients for dorsal and lateral scales on the epoxy resin surfaces were 0.331 and 0.323, respectively. In contrast, ventral scales possess ridges running parallel to the longitudinal body axis. They demonstrated a significantly lower friction coefficient compared to both dorsal and lateral scales (0.191 on average). In addition, ventral scales showed frictional anisotropy comparing longitudinal and perpendicular direction of the ridges. This study clearly demonstrates that different skin microstructure is responsible for different frictional properties in different body regions

    Models of peer support to remediate post-intensive care syndrome: A report developed by the SCCM Thrive International Peer Support Collaborative

    Get PDF
    Objective: Patients and caregivers can experience a range of physical, psychological, and cognitive problems following critical care discharge. The use of peer support has been proposed as an innovative support mechanism. Design: We sought to identify technical, safety and procedural aspects of existing operational models of peer support, among the Society of Critical Care Medicine Thrive Peer Support Collaborative. We also sought to categorize key distinctions between these models and elucidate barriers and facilitators to implementation. Subjects: 17 Thrive sites from the USA, UK, and Australia were represented by a range of healthcare professionals. Interventions: Via an iterative process of in-person and email/conference calls, members of the Collaborative, defined the key areas on which peer support models could be defined and compared; collected detailed self-reports from all sites; reviewed the information and identified clusters of models. Barriers and challenges to implementation of peer support models were also documented. Results: Within the Thrive Collaborative, six general models of peer support were identified: Community based, Psychologist-led outpatient, Models based within ICU follow-up clinics, Online, Groups based within ICU and Peer mentor models. The most common barriers to implementation were: recruitment to groups, personnel input and training: sustainability and funding, risk management and measuring success. Conclusion: A number of different models of peer support are currently being developed to help patients and families recover and grow in the post-critical care setting
    corecore