270 research outputs found

    Presence and abundance of microplastics in the Thames River Basin, UK

    Get PDF
    The global increase in plastic production has led to growing concern about the environmental impacts of plastics and their degradation products. Microplastics have been extensively observed and studied in the marine environment but little is known about their presence and abundance in freshwater environments. Although rivers are recognised as a significant source of microplastics to the oceans, they are seldom considered in studies of the environmental presence of microplastics and there are no data reported to date on microplastics in UK rivers (or indeed any freshwater bodies). This study aimed to identify and quantify the abundance and types of plastics in the Thames Basin where population densities and sewage inputs are well described. Ten sampling sites on the River Thames and its tributaries were selected, ranging from densely populated, urban areas to sparsely populated, rural areas. Sites are all downstream of sewage treatment works (STWs) serving known populations, allowing correlation between population density with plastic types and abundances found. In addition samples were collected from sites at known distances downstream of STW outfalls, as well as the effluent itself, to try and establish the proportion of plastics directly entering from STWs, and its fate and transport pathways. River sediment and water samples were collected at all sites. Sediment samples were initially searched by eye, followed by flotation and overflowing using ZnCl2 solution. Plastics collected from the sediments were subsequently identified by Raman spectroscopy. Initial observations indicate that coloured and manmade particles are obviously visible in sediments from sites with high population densities compared to few evident manmade particles in sediments from areas with low population densities. Further analysis will allow for correlation of the plastic types and abundance with population density and sewage inputs to understand the distribution of plastics in river systems

    Monitoring soil biodiversity in nature reserves in England - a role for metabarcoding

    Get PDF
    Tullgren extracts of soil mesofauna are proving challenging to identify using trained volunteers. Could metabarcoding be a rapid, cost-effective approach for monitoring soil mesofauna and characterising their communities

    Unique metabolites protect earthworms against plant polyphenols

    Get PDF
    All higher plants produce polyphenols, for defence against above-ground herbivory. These polyphenols also influence the soil micro- and macro-fauna that break down plant leaf litter. Polyphenols therefore indirectly affect the fluxes of soil nutrients and, ultimately, carbon turnover and ecosystem functioning in soils. It is unknown how earthworms, the major component of animal biomass in many soils, cope with high-polyphenol diets. Here, we show that earthworms possess a class of unique surface-active metabolites in their gut, which we term ‘drilodefensins’. These compounds counteract the inhibitory effects of polyphenols on earthworm gut enzymes, and high-polyphenol diets increase drilodefensin concentrations in both laboratory and field populations. This shows that drilodefensins protect earthworms from the harmful effects of ingested polyphenols. We have identified the key mechanism for adaptation to a dietary challenge in an animal group that has a major role in organic matter recycling in soils worldwide

    Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities

    Get PDF
    Plastic debris is an environmentally persistent and complex contaminant of increasing concern. Understanding the sources, abundance and composition of microplastics present in the environment is a huge challenge due to the fact that hundreds of millions of tonnes of plastic material is manufactured for societal use annually, some of which is released to the environment. The majority of microplastics research to date has focussed on the marine environment. Although freshwater and terrestrial environments are recognised as origins and transport pathways of plastics to the oceans, there is still a comparative lack of knowledge about these environmental compartments. It is highly likely that microplastics will accumulate within continental environments, especially in areas of high anthropogenic influence such as agricultural or urban areas. This review critically evaluates the current literature on the presence, behaviour and fate of microplastics in freshwater and terrestrial environments and, where appropriate, also draws on relevant studies from other fields including nanotechnology, agriculture and waste management. Furthermore, we evaluate the relevant biological and chemical information from the substantial body of marine microplastic literature, determining the applicability and comparability of this data to freshwater and terrestrial systems. With the evidence presented, the authors have set out the current state of the knowledge, and identified the key gaps. These include the volume and composition of microplastics entering the environment, behaviour and fate of microplastics under a variety of environmental conditions and how characteristics of microplastics influence their toxicity. Given the technical challenges surrounding microplastics research, it is especially important that future studies develop standardised techniques to allow for comparability of data. The identification of these research needs will help inform the design of future studies, to determine both the extent and potential ecological impacts of microplastic pollution in freshwater and terrestrial environments

    Acute toxicity of organic pesticides to Daphnia magna is unchanged by co-exposure to polystyrene microplastics

    Get PDF
    Daphnia magna were exposed to two pesticides in the presence or absence of microplastics (300 000 particles ml−1 1 µm polystyrene spheres) and to microplastics alone. The pesticides were dimethoate, an organophosphate insecticide with a low log Kow, and deltamethrin, a pyrethroid insecticide with a high log Kow. Daphnia were exposed to a nominal concentration range of 0.15, 0.31, 0.63, 1.25, 2.5, 5 mg l−1 dimethoate and 0.016, 0.08, 0.4, 2, 5 and 10 µg l−1 deltamethrin. Exposure to polystyrene microplastics alone showed no effects on Daphnia magna survival and mobility over a 72 h exposure. In the dimethoate exposures, mobility and survival were both affected from a concentration of 1.25 mg l−1, with effects were seen on mobility from 28 h and survival from 48 h, with greater effects seen with increasing concentration and exposure time. In deltamethrin exposures, survival was affected from a concentration of 0.4 µg l−1 and mobility from a concentration of 0.08 µg l−1. Effects of deltamethrin on mobility were seen from 5 h and on survival from 28 h, with greater effects on survival and mobility seen with increasing concentration and exposure time. Contrary to expectations, pesticide toxicity to Daphnia magna was not affected by the presence of microplastics, regardless of chemical binding affinity (log Kow). This therefore suggests that polystyrene microplastics are unlikely to act as a significant sink, nor as a vector for increased uptake of pesticides by aquatic organisms

    Ingestion of microplastics by the chironomid Chironomus sancticaroli and effects on the microbiome in the presence of PBDEs

    Get PDF
    Microplastic particles in the environment can associate with persistent organic pollutants (POPs) due to the hydrophobic nature of plastics and organic chemicals. PBDEs (polybrominated diphenyl ethers) are widely used as flame-retardants in products such as textiles and soft furnishings, with the potential to leach into the environment and be associated with microplastics. If ingested, the gut environment of an organism may favour desorption of adsorbed chemicals due to gut condition. Therefore the ingestion of microplastic particles has implications for uptake and bioaccumulation of these chemicals. Furthermore the presence of microplastics and chemicals in the gut of an organism can also influence the gut environment itself. Gut microbiomes are known to hold a vital role in host metabolism, nutrition and immunity and as such understanding the influence of chemicals and microplastics on the gut microbiota is key

    Large microplastic particles in sediments of tributaries of the River Thames, UK – abundance, sources and methods for effective quantification

    Get PDF
    Sewage effluent input and population were chosen as predictors of microplastic presence in sediments at four sites in the River Thames basin (UK). Large microplastic particles (1mm–4mm)were extracted using a stepwise approach to include visual extraction, flotation and identification using Raman spectroscopy. Microplastics were found at all four sites. One site had significantly higher numbers of microplastics than other sites, average 66 particles 100 g−1, 91% of which were fragments. This site was downstream of a storm drain outfall receiving urban runoff; many of the fragments at this site were determined to be derived of thermoplastic road-surface marking paints. At the remaining three sites, fibres were the dominant particle type. The most common polymers identified included polypropylene, polyester and polyarylsulphone. This study describes two major new findings: presence of microplastic particles in a UK freshwater system and identification of road marking paints as a source of microplastics

    Uptake routes and toxicokinetics of silver nanoparticles and silver ions in the earthworm Lumbricus rubellus

    Get PDF
    Current bioavailability models, such as the free ion activity model and biotic ligand model, explicitly consider that metal exposure will be mainly to the dissolved metal in ionic form. With the rise of nanotechnology products and the increasing release of metal-based nanoparticles (NPs) to the environment, such models may increasingly be applied to support risk assessment. It is not immediately clear, however, whether the assumption of metal ion exposure will be relevant for NPs. Using an established approach of oral gluing, a toxicokinetics study was conducted to investigate the routes of silver nanoparticles (AgNPs) and Ag+ ion uptake in the soil-dwelling earthworm Lumbricus rubellus. The results indicated that a significant part of the Ag uptake in the earthworms is through oral/gut uptake for both Ag+ ions and NPs. Thus, sealing the mouth reduced Ag uptake by between 40% and 75%. An X-ray analysis of the internal distribution of Ag in transverse sections confirmed the presence of increased Ag concentrations in exposed earthworm tissues. For the AgNPs but not the Ag+ ions, high concentrations were associated with the gut wall, liver-like chloragogenous tissue, and nephridia, which suggest a pathway for AgNP uptake, detoxification, and excretion via these organs. Overall, the results indicate that Ag in the ionic and NP forms is assimilated and internally distributed in earthworms and that this uptake occurs predominantly via the gut epithelium and less so via the body wall. The importance of oral exposure questions the application of current metal bioavailability models, which implicitly consider that the dominant route of exposure is via the soil solution, for bioavailability assessment and modeling of metal-based NPs

    Linking toxicant physiological mode of action with induced gene expression changes in Caenorhabditis elegans

    Get PDF
    Background Physiologically based modelling using DEBtox (dynamic energy budget in toxicology) and transcriptional profiling were used in Caenorhabditis elegans to identify how physiological modes of action, as indicated by effects on system level resource allocation were associated with changes in gene expression following exposure to three toxic chemicals: cadmium, fluoranthene (FA) and atrazine (AZ). Results For Cd, the physiological mode of action as indicated by DEBtox model fitting was an effect on energy assimilation from food, suggesting that the transcriptional response to exposure should be dominated by changes in the expression of transcripts associated with energy metabolism and the mitochondria. While evidence for effect on genes associated with energy production were seen, an ontological analysis also indicated an effect of Cd exposure on DNA integrity and transcriptional activity. DEBtox modelling showed an effect of FA on costs for growth and reproduction (i.e. for production of new and differentiated biomass). The microarray analysis supported this effect, showing an effect of FA on protein integrity and turnover that would be expected to have consequences for rates of somatic growth. For AZ, the physiological mode of action predicted by DEBtox was increased cost for maintenance. The transcriptional analysis demonstrated that this increase resulted from effects on DNA integrity as indicated by changes in the expression of genes chromosomal repair. Conclusions Our results have established that outputs from process based models and transcriptomics analyses can help to link mechanisms of action of toxic chemicals with resulting demographic effects. Such complimentary analyses can assist in the categorisation of chemicals for risk assessment purposes
    corecore