11 research outputs found

    Revealing the role of epithelial mechanics and macrophage clearance during pulmonary epithelial injury recovery in the presence of carbon nanotubes

    Get PDF
    Wound healing assays are extensively used to study tissue repair mechanisms; they are typically performed by means of physical (i.e., mechanical, electrical, or optical) detachment of the cells in order to create an open space in which live cells can lodge. Herein, an advanced system based on extensive photobleaching‐induced apoptosis; providing a powerful tool to understand the repair response of lung epithelial tissue, consisting of a small injury area where apoptotic cells are still intact, is developed. Notably, the importance of epithelial mechanics and the presence of macrophages during the repair can be understood. The findings reveal that individual epithelial cells are able to clear the apoptotic cells by applying a pushing force, whilst macrophages actively phagocytose the dead cells to create an empty space. It is further shown that this repair mechanism is hampered when carbon nanotubes (CNTs) are introduced: formation of aberrant (i.e., thickening) F‐actins, maturation of focal adhesion, and increase in traction force leading to retardation in cell migration are observed. The results provide a mechanistic view of how CNTs can interfere with lung repair

    Lock‐in thermography to analyze plasmonic nanoparticle dispersions

    Get PDF
    The physicochemical properties of nanoparticles (NPs) strongly rely on their colloidal stability, and any given dispersion can display remarkably different features, depending on whether it contains single particles or clusters. Thus, developing efficient experimental methods that are able to provide accurate and reproducible measures of the NP properties is a considerable challenge for both research and industrial development. By analyzing different NPs, through size and concentration, it is demonstrated that lock‐in thermography, based on light absorption and heat generation, is able to detect and differentiate the distinct aggregation and re‐ dispersion behavior of plasmonic NPs, e.g., gold and silver. Most importantly, the approach is nonintrusive and potentially highly cost‐effective compared to standard analytical techniques

    Beyond global charge: role of amine bulkiness and protein fingerprint on nanoparticle–cell interaction

    Get PDF
    Amino groups presented on the surface of nanoparticles are well‐known to be a predominant factor in the formation of the protein corona and subsequent cellular uptake. However, the molecular mechanism underpinning this relationship is poorly defined. This study investigates how amine type and density affect the protein corona and cellular association of gold nanoparticles with cells in vitro. Four specific poly(vinyl alcohol‐co‐N‐vinylamine) copolymers are synthesized containing primary, secondary, or tertiary amines. Particle cellular association (i.e., cellular uptake and surface adsorption), as well as protein corona composition, are then investigated. It is found that the protein corona (as a consequence of “amine bulkiness”) and amine density are both important in dictating cellular association. By evaluating the nanoparticle surface chemistry and the protein fingerprint, proteins that are significant in mediating particle–cell association are identified. In particular, primary amines, when exposed on the polymer side chain, are strongly correlated with the presence of alpha‐2‐HS‐ glycoprotein, and promote nanoparticle cellular association

    Acute aquatic toxicity to zebrafish and bioaccumulation in marine mussels of antimony tin oxide nanoparticles

    Get PDF
    Antimony tin oxide (Sb2O5/SnO2) is effective in the absorption of infrared radiation for applications, such as skylights. As a nanoparticle (NP), it can be incorporated into films or sheets providing infrared radiation attenuation while allowing for a transparent final product. The acute toxicity exerted by commercial Sb2O5/SnO2 (ATO) NPs was studied in adults and embryos of zebrafish (Danio rerio). Our results suggest that these NPs do not induce an acute toxicity in zebrafish, either adults or embryos. However, some sub-lethal parameters were altered: heart rate and spontaneous movements. Finally, the possible bioaccumulation of these NPs in the aquacultured marine mussel Mytilus sp. was studied. A quantitative analysis was performed using single particle inductively coupled plasma mass spectrometry (sp-ICP-MS). The results indicated that, despite being scarce (2.31 × 106 ± 9.05 × 105 NPs/g), there is some accumulation of the ATO NPs in the mussel. In conclusion, commercial ATO NPs seem to be quite innocuous to aquatic organisms; however, the fact that some of the developmental parameters in zebrafish embryos are altered should be considered for further investigation. More in-depth analysis of these NPs transformations in the digestive tract of humans is needed to assess whether their accumulation in mussels presents an actual risk to humans.Fundação para a CiĂȘncia e Tecnologia | Ref. 2020.04021.CEECIN

    Nanoparticle administration method in cell culture alters particle-cell interaction

    Get PDF
    As a highly interdisciplinary field, working with nanoparticles in a biomedical context requires a robust understanding of soft matter physics, colloidal behaviors, nano- characterization methods, biology, and bio-nano interactions. When reporting results, it can be easy to overlook simple, seemingly trivial experimental details. In this context, we set out to understand how in vitro technique, specifically the way we administer particles in 2D culture, can influence experimental outcomes. Gold nanoparticles coated with poly(vinylpyrrolidone) were added to J774A.1 mouse monocyte/macrophage cultures as either a concentrated bolus, a bolus then mixed via aspiration, or pre-mixed in cell culture media. Particle-cell interaction was monitored via inductively coupled plasma-optical emission spectroscopy and we found that particles administered in a concentrated dose interacted more with cells compared to the pre-mixed administration method. Spectroscopy studies reveal that the initial formation of the protein corona upon introduction to cell culture media may be responsible for the differences in particle-cell interaction. Modeling of particle deposition using the in vitro sedimentation, diffusion and dosimetry model helped to clarify what particle phenomena may be occurring at the cellular interface. We found that particle administration method in vitro has an effect on particle-cell interactions (i.e. cellular adsorption and uptake). Initial introduction of particles in to complex biological media has a lasting effect on the formation of the protein corona, which in turn mediates particle-cell interaction. It is of note that a minor detail, the way in which we administer particles in cell culture, can have a significant effect on what we observe regarding particle interactions in vitro

    A hydrofluoric acid-free method to dissolve and quantify silica nanoparticles in aqueous and solid matrices

    Get PDF
    As the commercial use of synthetic amorphous silica nanomaterials (SiO2-NPs) increases, their effects on the environment and human health have still not been explored in detail. An often-insurmountable obstacle for SiO2-NP fate and hazard research is the challenging analytics of solid particulate silica species, which involves toxic and corrosive hydrofluoric acid (HF). We therefore developed and validated a set of simple hydrofluoric acid-free sample preparation methods for the quantification of amorphous SiO2 micro- and nanoparticles. To circumvent HF, we dissolved the SiO2- NPs by base-catalyzed hydrolysis at room temperature or under microwave irradiation using potassium hydroxide, replacing the stabilizing fluoride ions with OH−, and exploiting the stability of the orthosilicic acid monomer under a strongly basic pH. Inductively coupled plasma – optical emission spectroscopy (ICP-OES) or a colorimetric assay served to quantify silicon. The lowest KOH: SiO2 molar ratio to effectively dissolve and quantify SiO2-NPs was 1.2 for colloidal Stöber SiO2-NPs at a pH >12. Fumed SiO2-NPs (AerosilÂź) or food grade SiO2 (E551) containing SiO2-NPs were degradable at higher KOH: SiO2 ratios >8000. Thus, hydrofluoric acid-free SiO2- NP digestion protocols based on KOH present an effective (recoveries of <84%), less hazardous, and easy to implement alternative to current methods

    Acoustic Vibrations of Au Nano-Bipyramids and their Modification under Ag Deposition: a Perspective for the Development of Nanobalances

    No full text
    We investigated the acoustic vibrations of gold nanobipyramids and bimetallic gold–silver core–shell bipyramids, synthesized by wet chemistry techniques, using a high-sensitivity pump–probe femtosecond setup. Three modes were observed and characterized in the gold core particles for lengths varying from 49 to 170 nm and diameters varying from 20 to 40 nm. The two strongest modes have been associated with the fundamental extensional and its first harmonic, and a weak mode has been associated with the fundamental radial mode, in very good agreement with numerical simulations. We then derived linear laws linking the periods to the dimensions both experimentally and numerically. To go further, we investigated the evolution of these modes under silver deposition on gold core bipyramids. We studied the evolution of the periods of the extensional modes, which were found to be in good qualitative agreement with numerical simulations. Moreover, we observed a strong enhancement of the radial mode amplitude when silver is deposited: we are typically sensitive to the deposition of 40 attograms of silver per gold core particle. This opens up possible applications in the field of mass sensing, where metallic nanobalances have an important role to play, taking advantage of their robustness and versatility

    Acoustic Vibrations of Au Nano-Bipyramids and their Modification under Ag Deposition: a Perspective for the Development of Nanobalances

    Get PDF
    We investigated the acoustic vibrations of gold nanobipyramids and bimetallic gold silver core-shell bipyramids, synthesized by wet chemistry techniques, using a high-sensitivity pump probe femtosecond setup. Three modes were observed and characterized in the gold core particles for lengths varying from 49 to 170 nm and diameters varying from 20 to 40 nm. The two strongest modes have been associated with the fundamental extensional and its first harmonic, and a weak mode has been associated with the fundamental radial mode, in very good agreement with numerical simulations. We then derived linear laws linking the periods to the dimensions both experimentally and numerically. To go further, we investigated the evolution of these modes under silver deposition on gold core bipyramids. We studied the evolution of the periods of the extensional modes, which were found to be in good qualitative agreement with numerical simulations. Moreover, we observed a strong enhancement of the radial mode amplitude when silver is deposited: we are typically sensitive to the deposition of 40 attograms of silver per gold core particle. This opens up possible applications in the field of mass sensing, where metallic nanobalances have an important role to play, taking advantage of their robustness and versatility
    corecore