1,531 research outputs found

    Biperiodic superlattices and the transparent state

    Full text link
    Coquelin et al. studied biperiodic semiconductor superlattices, which consist of alternating cell types, one with wide wells and the other narrow wells, separated by equal strength barriers. If the wells were identical, it would be a simply periodic system of N=2nN = 2n half-cells. When asymmetry is introduced, an allowed band splits at the Bragg point into two disjoint allowed bands. The Bragg resonance turns into a transparent state located close to the band edge of the lower(upper) band when the first(second) well is the wider. Analysis of this system gives insight into how band splitting occurs. Further we consider semi-periodic systems having N=2n+1N= 2n+1 half-cells. Surprisingly these have very different transmission properties, with an envelope of maximum transmission probability that crosses the envelope of minima at the transparent point.Comment: 12 pages, 10 figures Version 2: improved figures using colour, and some small improvements in the text, in response to referee comments Version 3: incorporates changes which arose in proofs stag

    Interminiband Rabi oscillations in biased semiconductor superlattices

    Full text link
    Carrier dynamics at energy level anticrossings in biased semiconductor superlattices, was studied in the time domain by solving the time-dependent Schroedinger equation. The resonant nature of interminiband Rabi oscillations has been explicitly demonstrated to arise from interference of intrawell and Bloch oscillations. We also report a simulation of direct Rabi oscillations across three minibands, in the high field regime, due to interaction between three strongly coupled minibands.Comment: 13 pages, 16 figure

    M-atom conductance oscillations of a metallic quantum wire

    Full text link
    The electron transport through a monoatomic metallic wire connected to leads is investigated using the tight-binding Hamiltonian and Green's function technique. Analytical formulas for the transmittance are derived and M-atom oscillations of the conductance versus the length of the wire are found. Maxima of the transmittance function versus the energy, for the wire consisted of N atoms, determine the (N+1) period of the conductance. The periods of conductance oscillations are discussed and the local and average quantum wire charges are presented. The average charge of the wire is linked with the period of the conductance oscillations and it tends to the constant value as the length of the wire increases. For M-atom periodicity there are possible (M-1) average occupations of the wire states.Comment: 8 pages, 5 figures. J.Phys.: Condens. matter (2005) accepte

    Tunnelling in quantum superlattices with variable lacunarity

    Full text link
    Quantum fractal superlattices are microelectronic devices consisting of a series of thin layers of two semiconductor materials deposited alternately on each other over a substrate following the rules of construction of a fractal set, here, a symmetrical polyadic Cantor fractal. The scattering properties of electrons in these superlattices may be modeled by using that of quantum particles in piecewise constant potential wells. The twist plots representing the reflection coefficient as function of the lacunarity parameter show the appearance of black curves with perfectly transparent tunnelling which may be classified as vertical, arc, and striation nulls. Approximate analytical formulae for these reflection-less curves are derived using the transfer matrix method. Comparison with the numerical results show their good accuracy.Comment: 12 pages, 3 figure

    Constructing a rational kinetic model of the selective propane oxidation over a mixed metal oxide catalyst

    Get PDF
    This research presents a kinetic investigation of the selective oxidation of propane to acrylic acid over a MoVTeNb oxide (M1 phase) catalyst. The paper contains both an overview of the related literature, and original results with a focus on kinetic aspects. Two types of kinetic experiments were performed in a plug flow reactor, observing (i) steady-state conditions (partial pressure variations) and (ii) the catalyst evolution as a function of time-on-stream. For this, the catalyst was treated in reducing atmosphere, before re-oxidising it. These observations in long term behaviour were used to distinguish different catalytic routes, namely for the formation of propene, acetic acid, acrylic acid, carbon monoxide and carbon dioxide. A partial carbon balance was introduced, which is a ‘kinetic fingerprint’, that distinguishes one type of active site from another. Furthermore, an ‘active site’ was found to consist of one or more ‘active centres’. A rational mechanism was developed based on the theory of graphs and includes two time scales belonging to (i) the catalytic cycle and (ii) the catalyst evolution. Several different types of active sites exist, at least as many, as kinetically independent product molecules are formed over a catalyst surface

    Frozen capillary waves on glass surfaces: an AFM study

    Full text link
    Using atomic force microscopy on silica and float glass surfaces, we give evidence that the roughness of melted glass surfaces can be quantitatively accounted for by frozen capillary waves. In this framework the height spatial correlations are shown to obey a logarithmic scaling law; the identification of this behaviour allows to estimate the ratio kT_F/πγkT\_F/\pi\gamma where kk is the Boltzmann constant, γ\gamma the interface tension and T_FT\_F the temperature corresponding to the ``freezing'' of the capillary waves. Variations of interface tension and (to a lesser extent) temperatures of annealing treatments are shown to be directly measurable from a statistical analysis of the roughness spectrum of the glass surfaces

    Enhanced observability of quantum post-exponential decay using distant detectors

    Get PDF
    We study the elusive transition from exponential to post-exponential (algebraic) decay of the probability density of a quantum particle emitted by an exponentially decaying source, in one dimension. The main finding is that the probability density at the transition time, and thus its observability, increases with the distance of the detector from the source, up to a critical distance beyond which exponential decay is no longer observed. Solvable models provide explicit expressions for the dependence of the transition on resonance and observational parameters, facilitating the choice of optimal conditions

    Spatial properties of π−π\pi-\pi conjugated network in semicrystalline polymer thin films studied by intensity x-ray cross-correlation functions

    Full text link
    We present results of x-ray study of spatial properties of π−π\pi-\pi conjugated networks in polymer thin films. We applied the x-ray cross-correlation analysis to x-ray scattering data from blends of poly(3-hexylthiophene) (P3HT) and gold nanoparticles. The Fourier spectra of the intensity cross-correlation functions for different films contain non-zero components of orders n=2,4n=2,4 and 66 measuring the degree of structural order in the system.Comment: 6 pages, 2 figures, Proceedings ICXOM22 Conference, 2-6 September 2013, Hamburg, German
    • …
    corecore