32 research outputs found
CHIRON - A Fiber Fed Spectrometer for Precise Radial Velocities
The CHIRON optical high-resolution echelle spectrometer was commissioned at
the 1.5m telescope at CTIO in 2011. The instrument was designed for high
throughput and stability, with the goal of monitoring radial velocities of
bright stars with high precision and high cadence for the discovery of low-mass
exoplanets. Spectral resolution of R=79,000 is attained when using a slicer
with a total (including telescope and detector) efficiency of 6% or higher,
while a resolution of R=136,000 is available for bright stars. A fixed spectral
range of 415 to 880 nm is covered. The echelle grating is housed in a vacuum
enclosure and the instrument temperature is stabilized to +-0.2deg. Stable
illumination is provided by an octagonal multimode fiber with excellent
light-scrambling properties. An iodine cell is used for wavelength calibration.
We describe the main optics, fiber feed, detector, exposure-meter, and other
aspects of the instrument, as well as the observing procedure and data
reduction.Comment: 15 pages, 10 figures. Accepted by PAS
MASCARA-2 b: A hot Jupiter transiting the A-star HD185603
In this paper we present MASCARA-2 b, a hot Jupiter transiting the
A2 star HD 185603. Since early 2015, MASCARA has taken more than 1.6 million
flux measurements of the star, corresponding to a total of almost 3000 hours of
observations, revealing a periodic dimming in the flux with a depth of .
Photometric follow-up observations were performed with the NITES and IAC80
telescopes and spectroscopic measurements were obtained with the Hertzsprung
SONG telescope. We find MASCARA-2 b orbits HD 185603 with a period of
at a distance of , has a radius of and place a
upper limit on the mass of . HD 185603 is a
rapidly rotating early-type star with an effective temperature of
and a mass and radius of
, , respectively. Contrary
to most other hot Jupiters transiting early-type stars, the projected planet
orbital axis and stellar spin axis are found to be aligned with . The brightness of the host star and the high equilibrium
temperature, , of MASCARA-2 b make it a suitable target for
atmospheric studies from the ground and space. Of particular interest is the
detection of TiO, which has recently been detected in the similarly hot planets
WASP-33 b and WASP-19 b.Comment: 8 pages, 4 figures, Accepted for publication in A&
Data calibration for the MASCARA and bRing instruments
Aims: MASCARA and bRing are photometric surveys designed to detect
variability caused by exoplanets in stars with . Such variability
signals are typically small and require an accurate calibration algorithm,
tailored to the survey, in order to be detected. This paper presents the
methods developed to calibrate the raw photometry of the MASCARA and bRing
stations and characterizes the performance of the methods and instruments.
Methods: For the primary calibration a modified version of the coarse
decorrelation algorithm is used, which corrects for the extinction due to the
earth's atmosphere, the camera transmission, and intrapixel variations.
Residual trends are removed from the light curves of individual stars using
empirical secondary calibration methods. In order to optimize these methods, as
well as characterize the performance of the instruments, transit signals were
injected in the data. Results: After optimal calibration an RMS scatter of 10
mmag at is achieved in the light curves. By injecting transit
signals with periods between one and five days in the MASCARA data obtained by
the La Palma station over the course of one year, we demonstrate that MASCARA
La Palma is able to recover 84.0, 60.5 and 20.7% of signals with depths of 2, 1
and 0.5% respectively, with a strong dependency on the observed declination,
recovering 65.4% of all transit signals at versus 35.8% at
. Using the full three years of data obtained by MASCARA La
Palma to date, similar recovery rates are extended to periods up to ten days.
We derive a preliminary occurrence rate for hot Jupiters around A-stars of , knowing that many hot Jupiters are still overlooked. In the era of
TESS, MASCARA and bRing will provide an interesting synergy for finding
long-period ( days) transiting gas-giant planets around the brightest
stars.Comment: 18 pages, 17 figures, accepted for publication in A&
The LCES HIRES/Keck Precision Radial Velocity Exoplanet Survey
This document is the Accepted Manuscript version of the following article: R. Paul Butler, et al, The LCES HIRES/Keck Precision Radial Velocity Exoplanet Survey, The Astronomical Journal, Vol 153 (5), 19 pp., published 13 April 2017. The Version of Record is available online at doi: https://doi.org/10.3847/1538-3881/aa66ca. Paper data available at: http://home.dtm.ciw.edu/ebps/data/. © 2017. The American Astronomical Society. All rights reserved.We describe a 20-year survey carried out by the Lick-Carnegie Exoplanet Survey Team (LCES), using precision radial velocities from HIRES on the Keck-I telescope to find and characterize extrasolar planetary systems orbiting nearby F, G, K, and M dwarf stars. We provide here 60,949 precision radial velocities for 1,624 stars contained in that survey. We tabulate a list of 357 significant periodic signals that are of constant period and phase, and not coincident in period and/or phase with stellar activity indices. These signals are thus strongly suggestive of barycentric reflex motion of the star induced by one or more candidate exoplanets in Keplerian motion about the host star. Of these signals, 225 have already been published as planet claims, 60 are classified as significant unpublished planet candidates that await photometric follow-up to rule out activity-related causes, and 54 are also unpublished, but are classified as "significant" signals that require confirmation by additional data before rising to classification as planet candidates. Of particular interest is our detection of a candidate planet with a minimum mass of 3.9 Earth masses and an orbital period of 9.9 days orbiting Lalande 21185, the fourth-closest main sequence star to the Sun. For each of our exoplanetary candidate signals, we provide the period and semi-amplitude of the Keplerian orbital fit, and a likelihood ratio estimate of its statistical significance. We also tabulate 18 Keplerian-like signals that we classify as likely arising from stellar activity.Peer reviewedFinal Accepted Versio
M2K: II. A Triple-Planet System Orbiting HIP 57274
Doppler observations from Keck Observatory have revealed a triple planet
system orbiting the nearby mid-type K dwarf, HIP 57274. The inner planet, HIP
57274b, is a super-Earth with \msini\ = 11.6 \mearth (0.036 \mjup), an orbital
period of 8.135 0.004 d, and slightly eccentric orbit .
We calculate a transit probability of 6.5% for the inner planet. The second
planet has \msini\ = 0.4 \mjup\ with an orbital period of 32.0 d in
a nearly circular orbit, and . The third planet has \msini\
= 0.53 \mjup\ with an orbital period of 432 d (1.18 years) and an
eccentricity . This discovery adds to the number of super
Earth mass planets with \msini < 12 \mearth\ that have been detected with
Doppler surveys. We find that 56 % super-Earths are members of
multi-planet systems. This is certainly a lower limit because of observational
detectability limits, yet significantly higher than the fraction of Jupiter
mass exoplanets, %, that are members of Doppler-detected,
multi-planet systems.Comment: 11 figures, submitte to ApJ on Sept 10, 201
Multiplexing the information on an optical disc by angle and phase coding
We present simulation and experimental studies on the multiplexing of information by encoding more than one bit on a focused optical beam. The method is based on encoding information on both longitudinal and transverse directions of the beam. The presen
Fiber scrambling for precise radial velocities at Lick and Keck Observatories
The detection of Earth analogs with radial velocity requires extreme Doppler precision and long term stability. Variations in the illumination of the slit and of the spectrograph optics occur on time scales of seconds and minutes, primarily because of guiding, seeing and focusing. These variations yield differences in the instrumental profile (IP). In order to stabilize the IP, we designed a fiber feed for the Hamilton spectrograph at Lick and for HIRES at Keck. Here, we report all results obtained with these fiber scramblers. We also present the design of a new double scrambler/pupil slicer for HIRES at Keck.7 page(s
Extreme Doppler precision with octagonal fiber scramblers
The detection of Earth analogs with radial velocity requires long-term precision of 10 cm/s. One of the factors limiting precision is variation in instrumental profile from observation to observation due to changes in the illumination of the slit and spectrograph optics. Fiber optics are naturally efficient scramblers. Our research is focused on understanding the scrambling properties of fibers with different geometries. We have characterized circular and octagonal fibers in terms of focal ratio degradation, near-field and far-field distributions. We have characterized these fibers using a bench-mounted high-resolution spectrograph: the Yale Doppler Diagnostics Facility (YDDF).10 page(s
Recommended from our members
Spray-Coated Lead-Free Cs<inf>2</inf>AgBiBr<inf>6</inf> Double Perovskite Solar Cells with High Open-Circuit Voltage
Lead-free Cs2AgBiBr6 double perovskite is considered a promising alternative photovoltaic absorber to the widely-used lead halide perovskite thanks to its easy processability, high stability and reduced toxicity. Herein, we report for the first-time spray processing for the deposition of Cs2AgBiBr6 double perovskite thin films. We compare microstructural (X-ray diffraction, scanning electron microscopy) and optoelectronic (absorbance, photoluminescence, photocurrent density versus applied voltage curves, electrochemical impedance spectroscopy) properties of spray-coated film with the spin-coated benchmark. Incorporation of the spray-coated Cs2AgBiBr6 double perovskite thin films in solar cells leads to a 2.3% photoconversion efficiency with high open-circuit voltage of 1.09 V. This study highlights the suitability of ultrasonic spray deposition for the optimization of Cs2AgBiBr6 solar cells in terms of light absorption properties and charge transfer at the Cs2AgBiBr6/hole transporting layer interface
MASCARA-1 b
We report the discovery of MASCARA-1 b, which is the first exoplanet discovered with the Multi-site All-Sky CAmeRA (MASCARA). This exoplanet is a hot Jupiter orbiting a bright mV = 8.3, rapidly rotating (vsini⋆ > 100 km s-1) A8 star with a period of 2.148780 ± 8 × 10-6 days. The planet has a mass and radius of 3.7 ± 0.9 MJup and 1.5 ± 0.3 RJup, respectively. As with most hot Jupiters transiting early-type stars, we find a misalignment between the planet orbital axis and the stellar spin axis, which may be a signature of the formation and migration histories of this family of planets. MASCARA-1 b has a mean density of 1.5 ± 0.9 g cm-3 and an equilibrium temperature of 2570+50-30K, that is one of the highest temperatures known for a hot Jupiter to date. The system is reminiscent of WASP-33, but the host star lacks apparent delta-scuti variations, making the planet an ideal target for atmospheric characterization. We expect this to be the first of a series of hot Jupiters transiting bright early-type stars that will be discovered by MASCARA