135 research outputs found

    Possible observation of parametrically amplified coherent phasons in K0.3MoO3 using time-resolved extreme-ultraviolet ARPES

    Full text link
    We use time- and angle-resolved photoemission spectroscopy (tr-ARPES) in the Extreme Ultraviolet (EUV) to measure the time- and momentum-dependent electronic structure of photo-excited K0.3MoO3. Prompt depletion of the Charge Density Wave (CDW) condensate launches coherent oscillations of the amplitude mode, observed as a 1.7-THz-frequency modulation of the bonding band position. In contrast, the anti-bonding band oscillates at about half this frequency. We attribute these oscillations to coherent excitation of phasons via parametric amplification of phase fluctuations.Comment: 4 figure

    Evolution of Ultracold, Neutral Plasmas

    Get PDF
    We present the first large-scale simulations of an ultracold, neutral plasma, produced by photoionization of laser-cooled xenon atoms, from creation to initial expansion, using classical molecular dynamics methods with open boundary conditions. We reproduce many of the experimental findings such as the trapping efficiency of electrons with increased ion number, a minimum electron temperature achieved on approach to the photoionization threshold, and recombination into Rydberg states of anomalously-low principal quantum number. In addition, many of these effects establish themselves very early in the plasma evolution (∌\sim ns) before present experimental observations begin.Comment: 4 pages, 3 figures, submitted to PR

    A simple electron time-of-flight spectrometer for ultrafast vacuum ultraviolet photoelectron spectroscopy of liquid solutions

    Get PDF
    We present a simple electron time of flight spectrometer for time resolved photoelectron spectroscopy of liquid samples using a vacuum ultraviolet (VUV) source produced by high-harmonic generation. The field free spectrometer coupled with the time-preserving monochromator for the VUV at the Artemis facility of the Rutherford Appleton Laboratory achieves an energy resolution of 0.65 eV at 40 eV with a sub 100 fs temporal resolution. A key feature of the design is a differentially pumped drift tube allowing a microliquid jet to be aligned and started at ambient atmosphere while preserving a pressure of 10−1 mbar at the micro channel plate detector. The pumping requirements for photoelectron (PE) spectroscopy in vacuum are presented while the instrument performance is demonstrated with PE spectra of salt solutions in water. The capability of the instrument for time resolved measurements is demonstrated by observing the ultrafast (50 fs) vibrational excitation of water leading to temporary proton transfer

    Spectroscopic view of ultrafast charge carrier dynamics in single- and bilayer transition metal dichalcogenide semiconductors

    Get PDF
    Funding: We gratefully acknowledge funding from VILLUM FONDEN through the Young Investigator Program (Grant. No. 15375) and the Centre of Excellence for Dirac Materials (Grant.No. 11744), the Danish Council for Independent Research, Natural Sciences under the Sapere Aude program (Grant Nos. DFF-9064-00057B and DFF-6108-00409). Access to the Artemis Facility was funded by STFC. I.M. acknowledges financial support by the International Max Planck Research School for Chemistry and Physics of Quantum Materials (IMPRS-CPQM). The authors also acknowledge The Royal Society and The Leverhulme Trust.The quasiparticle spectra of atomically thin semiconducting transition metal dichalcogenides (TMDCs) and their response to an ultrafast optical excitation critically depend on interactions with the underlying substrate. Here, we present a comparative time- and angle-resolved photoemission spectroscopy (TR-ARPES) study of the transient electronic structure and ultrafast carrier dynamics in the single- and bilayer TMDCs MoS2 and WS2 on three different substrates: Au(111), Ag(111) and graphene/SiC. The photoexcited quasiparticle bandgaps are observed to vary over the range of 1.9-2.3 eV between our systems. The transient conduction band signals decay on a sub-100 fs timescale on the metals, signifying an efficient removal of photoinduced carriers into the bulk metallic states. On graphene, we instead observe two timescales on the order of 200 fs and 50 ps, respectively, for the conduction band decay in MoS2. These multiple timescales are explained by Auger recombination involving MoS2 and in-gap defect states. In bilayer TMDCs on metals we observe a complex redistribution of excited holes along the valence band that is substantially affected by interactions with the continuum of bulk metallic states.Publisher PDFPeer reviewe

    VUV excitation of a vibrational wavepacket in D2 measured through strong-field dissociative ionisation

    Get PDF
    Femtosecond vacuum ultraviolet pulses from a monochromated high harmonic generation source excite vibrational wavepackets in the B1ÎŁg+{B}^{1}{{\rm{\Sigma }}}_{{\rm{g}}}^{+} state of D2. The wavepacket motion is measured through strong field ionization into bound and dissociative ion states yielding D2+{{\rm{D}}}_{2}^{+} and D+ products. The time dependence of the D2+{{\rm{D}}}_{2}^{+} and D+ ion signals provides a sensitive fingerprint of the quantum nuclear wavepacket, due to the different ionization rates for the two channels. The experiments are modelled with excitation and ionization processes included explicitly, with the results of the model showing a very good agreement with the experimental observations. The experiment demonstrates the level of detail attainable when studying ultrafast quantum nuclear dynamics using high harmonic sources

    Momentum-resolved linear dichroism in bilayer MoS2

    Get PDF
    In solid state photoemission experiments it is possible to extract information about the symmetry and orbital character of the electronic wave functions via the photoemission selection rules that shape the measured intensity. This approach can be expanded in a pump-probe experiment where the intensity contains additional information about interband excitations induced by an ultrafast laser pulse with tunable polarization. Here, we find an unexpected strong linear dichroism effect (up to 42.4%) in the conduction band of bilayer MoS2, when measuring energy- A nd momentum-resolved snapshots of excited electrons by time- A nd angle-resolved photoemission spectroscopy. We model the polarization-dependent photoemission intensity in the transiently populated conduction band using the semiconductor Bloch equations. Our theoretical analysis reveals a strongly anisotropic momentum dependence of the optical excitations due to intralayer single-particle hopping, which explains the observed linear dichroism

    Temporal feedback control of high-intensity laser pulses to optimize ultrafast heating of atomic clusters

    Get PDF
    We describe how active feedback routines can be applied at a limited repetition rate (5 Hz) to optimize high-power (> 10 TW) laser interactions with clustered gases. Optimization of x-ray production from an argon cluster jet, using a genetic algorithm, approximately doubled the measured energy through temporal modification of the 150 mJ driving laser pulse. This approach achieved an increased radiation yield through exploration of a multi-dimensional parameter space, without requiring detailed a priori knowledge of the complex cluster dynamics. The optimized laser pulses exhibited a slow rising edge to the intensity profile, which enhanced the laser energy coupling into the cluster medium, compared to the optimally compressed FWHM pulse (40 fs). Our work suggests that this technique can be more widely utilized for control of intense pulsed secondary radiation from petawatt-class laser systems

    New Light Source (NLS) project: conceptual design report

    Get PDF

    Laser wakefield acceleration with active feedback at 5 Hz

    Get PDF
    We describe the use of a genetic algorithm to apply active feedback to a laser wakefield accelerator at a higher power (10 TW) and a lower repetition rate (5 Hz) than previous work. The temporal shape of the drive laser pulse was adjusted automatically to optimize the properties of the electron beam. By changing the software configuration, different properties could be improved. This included the total accelerated charge per bunch, which was doubled, and the average electron energy, which was increased from 22 to 27 MeV. Using experimental measurements directly to provide feedback allows the system to work even when the underlying acceleration mechanisms are not fully understood, and, in fact, studying the optimized pulse shape might reveal new insights into the physical processes responsible. Our work suggests that this technique, which has already been applied with low-power lasers, can be extended to work with petawatt-class laser systems
    • 

    corecore