1,005 research outputs found
CELL-TO-CELL INTERACTION IN THE IMMUNE RESPONSE : VI. CONTRIBUTION OF THYMUS-DERIVED CELLS AND ANTIBODY-FORMING CELL PRECURSORS TO IMMUNOLOGICAL MEMORY
Collaboration between thymus-derived lymphocytes and nonthymus-derived antibody-forming cell precursors occurs in the primary antibody response of mice to heterologous erythrocytes and serum proteins. The purpose of the experiments reported here was to determine whether collaboration took place in an adoptive secondary antibody response. A chimeric population of lymphocytes was produced by reconstituting neonatally thymectomized CBA mice soon after birth with (CBA x C57BL)F1 thymus lymphocytes. These mice could be effectively primed to fowl immunoglobulin G (FγG) and their thoracic duct lymphocytes adoptively transferred memory responses to irradiated mice. The activity of these cells was impaired markedly by preincubation with CBA anti-C57BL serum and to a lesser extent by anti-θ-serum. Reversal of this deficiency was obtained by adding T cells in the form of thoracic duct cells from normal CBA mice. Cells from FγG-primed mice were at least 10 times as effective as cells from normal mice or from CBA mice primed to horse erythrocytes. These results were considered to support the concept that memory resides in the T cell population and that collaboration between T and B cells is necessary for an optimal secondary antibody response. Poor antibody responses were obtained in irradiated mice given mixtures of thoracic duct cells from primed mice and of B cells from unprimed mice (in the form of spleen or thoracic duct cells from thymectomized donors). In contrast to the situation with T cells, the deficiency in the B cell population could not be reversed by adding B cells from unprimed mice. It was considered that memory resides in B cells as well as in T cells and that priming probably entails a change in the B cell population which is fundamentally different from that produced in the T cell population
EFFECT OF RECENT ANTIGEN PRIMING ON ADOPTIVE IMMUNE RESPONSES : I. SPECIFIC UNRESPONSIVENESS OF CELLS FROM LYMPHOID ORGANS OF MICE PRIMED WITH HETEROLOGOUS ERYTHROCYTES
When spleen, mesenteric lymph node, or Peyer's patch cells from mice primed 24 h before with either sheep erythrocytes (SRC) or horse erythrocytes (HRC) were transferred together with both SRC and HRC to irradiated mice, antibody responses measured 7 days later were very low to the priming antigen but high to the other antigen. This was demonstrated either by measuring numbers of antibody-forming cells in spleen or levels of hemagglutinins in serum. Specific unresponsiveness of the transferred cells was evident in both the 19S and 7S responses. It was observed only when strict experimental conditions were followed: (a) the cell donors had to be primed with not less than 109 erythrocytes given intravenously; (b) the cells had to be transferred between 1 and 2 days after antigen priming; (c) antibody responses in the recipients were measured within 7 days of cell transfer, i.e., partial recovery was evident by 11 days; (d) the transferred cells had to be challenged in the recipients within 1 day after cell transfer: when challenge was delayed for 5 days or longer, responsiveness returned. The failure of cells from recently primed donors to respond to the priming antigen on adoptive transfer could be overcome by supplementing with normal spleen cells, but not with thymus alone or bone marrow alone. This implied that unresponsiveness occurred at the levels of both T and B lymphocytes, and was not due to a suppressive influence exerted by T cells. Further work is in progress to determine the mechanism of this transient state of specific unresponsiveness
CELL-TO-CELL INTERACTION IN THE IMMUNE RESPONSE : VIII. RADIOSENSITIVITY OF THYMUS-DERIVED LYMPHOCYTES
The helper function of carrier-primed T cells was found to be radiosensitive in vivo. The results could not be attributed to interference with the spleen-seeking properties of the irradiated cells. It is suggested that T cell division is essential for the induction of 7S antibody responses in vivo
A RECEPTOR FOR ANTIBODY ON B LYMPHOCYTES : I. METHOD OF DETECTION AND FUNCTIONAL SIGNIFICANCE
Evidence is presented for the existence on all B lymphocytes, but not on T lymphocytes, of a membrane-associated receptor for antibody. The receptor was detected by a radioautographic technique in which lymphoid cells were incubated with antibody followed by the corresponding radioiodinated antigen. The ease with which antibody eluted during washing indicated that the bond between antibody and cell was weak. The formation of an antibody-antigen complex on the cell surface, however, stabilized the bond and permitted accurate quantitation of cells with adherent antibody. The ability of several combinations of antibody and antigen to adhere to the cells demonstrated the nonspecificity of the phenomenon and emphasized the need for care in interpretation of antigen-binding studies particularly when immune cells are being used. The identity of antibody-binding lymphocytes was established by two different approaches. In the first, mouse lymphocyte populations greatly enriched for either T cells or B cells were examined. Their T cell content was assessed by means of well-established markers such as the θ C3H isoantigen. When this was compared with the number of antibody-binding cells, an inverse relationship was obtained in each instance; thus almost all thoracic duct cells from athymic mice labeled with an immune complex although none were θ positive. The striking reduction in antibody-binding cells observed in bursectomized chickens provided a second and independent line of evidence suggesting that B cells, not T cells, bind antibody. The ability of B cells from primed animals to bind antibody in vivo made it important to test whether this phenomenon was related to the carriage of immunological memory. No correlation was, however, found between membrane-bound antibody and memory. It was proposed that the existence of a receptor of this kind may provide a rational explanation for antibody-dependent killing of target cells and may prove of importance in antigen concentration particularly during the secondary response
Quantitative resistance can lead to evolutionary changes in traits not targeted by the resistance QTLs.
This paper addresses the general concern in plant pathology that the introduction of quantitative resistance in the landscape can lead to increased pathogenicity. Hereto, we study the hypothetical case of a quantitative trait loci (QTL) acting on pathogen spore production per unit lesion area. To regain its original fitness, the pathogen can break the QTL, restoring its spore production capacity leading to an increased spore production per lesion. Or alternatively, it can increase its lesion size, also leading to an increased spore production per lesion. A data analysis shows that spore production per lesion (affected by the resistance QTL) and lesion size (not targeted by the QTL) are positively correlated traits, suggesting that a change in magnitude of a trait not targeted by the QTL (lesion size) might indirectly affect the targeted trait (spore production per lesion). Secondly, we model the effect of pathogen adaptation towards increased lesion size and analyse its consequences for spore production per lesion. The model calculations show that when the pathogen is unable to overcome the resistance associated QTL, it may compensate for its reduced fitness by indirect selection for increased pathogenicity on both the resistant and susceptible cultivar, but whereby the QTLs remain effective.Rothamsted Research receives support from the Biotechnology and Biological Sciences Research Council (BBSRC) of the United Kingdom. F v d Berg was funded by an INRA-BBSRC funded project entitled ‘Epidemiological and evolutionary models for invasion and persistence of disease’. CAG gratefully acknowledges support of a BBSRC Professional Fellowship
Geometric View of Measurement Errors
The slope of the best fit line from minimizing the sum of the squared oblique
errors is the root of a polynomial of degree four. This geometric view of
measurement errors is used to give insight into the performance of various
slope estimators for the measurement error model including an adjusted fourth
moment estimator introduced by Gillard and Iles (2005) to remove the jump
discontinuity in the estimator of Copas (1972). The polynomial of degree four
is associated with a minimun deviation estimator. A simulation study compares
these estimators showing improvement in bias and mean squared error
Ethiopian agriculture has greater potential for carbon sequestration than previously estimated
More than half of the cultivation-induced carbon loss from agricultural soils could be restored through improved management. To incentivise carbon sequestration, the potential of improved practices needs to be verified. To date, there is sparse empirical evidence of carbon sequestration through improved practices in East-Africa. Here, we show that agroforestry and restrained grazing had a greater stock of soil carbon than their bordering pair-matched controls, but the difference was less obvious with terracing. The controls were treeless cultivated fields for agroforestry, on slopes not terraced for terracing, and permanent pasture for restrained grazing, representing traditionally managed agricultural practices dominant in the case regions. The gain by the improved management depended on the carbon stocks in the control plots. Agroforestry for 6-20 years led to 11.4 Mg ha(-1) and restrained grazing for 6-17 years to 9.6 Mg ha(-1) greater median soil carbon stock compared with the traditional management. The empirical estimates are higher than previous process-model-based estimates and indicate that Ethiopian agriculture has greater potential to sequester carbon in soil than previously estimated.Peer reviewe
- …