64 research outputs found

    Cavity Ringdown Spectroscopy of the Hydroxy-Methyl-Peroxy Radical

    Get PDF
    We report vibrational and electronic spectra of the hydroxy-methyl-peroxy radical (HOCH_2OO^• or HMP), which was formed as the primary product of the reaction of the hydroperoxy radical, HO_2^•, and formaldehyde, HCHO. The ν_1 vibrational (OH stretch) spectrum and the à ← X electronic spectrum of HMP were detected by infrared cavity ringdown spectroscopy (IR-CRDS), and assignments were verified with density functional calculations. The HMP radical was generated in reactions of HCHO with HO_2^•. Free radical reactions were initiated by pulsed laser photolysis (PLP) of Cl_2 in the presence of HCHO and O_2 in a flow reactor at 300–330 Torr and 295 K. IR-CRDS spectra were measured in mid-IR and near-IR regions over the ranges 3525–3700 cm^(–1) (ν_1) and 7250–7800 cm^(–1) (à ← X) respectively, at a delay time 100 μs after photolysis. The ν_1 spectrum had an origin at 3622 cm^(–1) and exhibited partially resolved P- and R-branch contours and a small Q-branch. At these short delay times, spectral interference from HOOH and HCOOH was minimal and could be subtracted. From B3LYP/6-31+G(d,p) calculations, we found that the anharmonic vibrational frequency and band contour predicted for the lowest energy conformer, HMP-A, were in good agreement with the observed spectrum. In the near-IR, we observed four well spaced vibronic bands, each with partially resolved rotational contours. We assigned the apparent origin of the à ← X electronic spectrum of HMP at 7389 cm^(–1) and two bands to the blue to a progression in ν15′, the lowest torsional mode of the à state (ν_(15′) = 171 cm^(–1)). The band furthest to the red was assigned as a hot band in ν^(15″), leading to a ground state torsional frequency of (ν^(15″) = 122 cm^(–1)). We simulated the spectrum using second order vibrational perturbation theory (VPT2) with B3LYP/6-31+G(d,p) calculations at the minimum energy geometries of the HMP-A conformer on the X and à states. The predictions of the electronic origin frequency, torsional frequencies, anharmonicities, and rotational band contours matched the observed spectrum. We investigated the torsional modes more explicitly by computing potential energy surfaces of HMP as a function of the two dihedral angles τ_(HOCO) and τ_(OOCO). Wave functions and energy levels were calculated on the basis of this potential surface; these results were used to calculate the Franck–Condon factors, which reproduced the vibronic band intensities in the observed electronic spectrum. The transitions that we observed all involved states with wave functions localized on the minimum energy conformer, HMP-A. Our calculations indicated that the observed near-IR spectrum was that of the lowest energy X state conformer HMP-A, but that this conformer is not the lowest energy conformer in the à state, which remains unobserved. We estimated that the energy of this lowest conformer (HMP-B) of the à state is E_0 (Ã, HMP-B) ≈ 7200 cm^(–1), on the basis of the energy difference E_0(HMP-B) – E_0(HMP-A) on the à state computed at the B3LYP/6-31+G(d,p) level

    Feasibility of Harbor-wide Barrier Systems: Preliminary Analysis for Boston Harbor

    Get PDF
    The aim of this study is to provide the City of Boston with a preliminary assessment of the feasibilities and potential benefits, costs, and environmental impacts of three harborwide barrier configurations. While this study is not comprehensive, and there are many ways that further research could refine and extend its findings, those findings were clear enough to justify making recommendations for next steps. The authors recommend that the City continue to focus its climate resilience strategy for the next several decades on the shore-based multi-layered approach described in Climate Ready Boston. Shore-based solutions would provide flood management more quickly at a lower cost, offer several key advantages over a harbor-wide barrier, and provide more flexibility in adapting and responding to changing conditions, technological innovations, and new information about global sea level rise. These shore-based solutions would be needed in any case over the next few decades to manage coastal flooding during the design and construction period of a harbor-wide barrier if a decision was made to build one in the future

    Moving knowledge into action for more effective practice, programmes and policy: protocol for a research programme on integrated knowledge translation

    Full text link

    Patient and stakeholder engagement learnings: PREP-IT as a case study

    Get PDF

    Correction to: Cluster identification, selection, and description in Cluster randomized crossover trials: the PREP-IT trials

    Get PDF
    An amendment to this paper has been published and can be accessed via the original article

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    Influence of seasonality and gestation on habitat selection by northern Mexican gartersnakes (<i>Thamnophis eques megalops</i>)

    No full text
    <div><p>Species conservation requires a thorough understanding of habitat requirements. The northern Mexican gartersnake (<i>Thamnophis eques megalops</i>) was listed as threatened under the U.S. Endangered Species Act in 2014. Natural resource managers are interested in understanding the ecology of this subspecies to guide management decisions and to determine what features are necessary for habitat creation and restoration. Our objective was to identify habitat selection of northern Mexican gartersnakes in a highly managed, constructed wetland hatchery. We deployed transmitters on 42 individual gartersnakes and documented use of habitat types and selection of specific habitat features. Habitat selection was similar between males and females and varied seasonally. During the active season (March–October), gartersnakes primarily selected wetland edge habitat with abundant cover. Gestating females selected similar locations but with less dense cover. During the inactive season (November–February), gartersnakes selected upland habitats, including rocky slopes with abundant vegetation. These results of this study can help inform management of the subspecies, particularly in human-influenced habitats. Conservation of this subspecies should incorporate a landscape-level approach that includes abundant wetland edge habitat with a mosaic of dense cover for protection and sparsely vegetated areas for basking connected to terrestrial uplands for overwintering.</p></div

    Area of gartersnake activity range.

    No full text
    <p>Area of gartersnake activity range.</p

    Habitat characteristics.

    No full text
    <p>Habitat characteristics.</p
    • …
    corecore