165 research outputs found
Comprehensive Analysis of the 16p11.2 Deletion and Null Cntnap2 Mouse Models of Autism Spectrum Disorder
Autism spectrum disorder comprises several neurodevelopmental conditions presenting symptoms in social communication and restricted, repetitive behaviors. A major roadblock for drug development for autism is the lack of robust behavioral signatures predictive of clinical efficacy. To address this issue, we further characterized, in a uniform and rigorous way, mouse models of autism that are of interest because of their construct validity and wide availability to the scientific community. We implemented a broad behavioral battery that included but was not restricted to core autism domains, with the goal of identifying robust, reliable phenotypes amenable for further testing. Here we describe comprehensive findings from two known mouse models of autism, obtained at different developmental stages, using a systematic behavioral test battery combining standard tests as well as novel, quantitative, computer-vision based systems. The first mouse model recapitulates a deletion in human chromosome 16p11.2, found in 1% of individuals with autism. The second mouse model harbors homozygous null mutations in Cntnap2, associated with autism and Pitt-Hopkins-like syndrome. Consistent with previous results, 16p11.2 heterozygous null mice, also known as Del(7Slx1b-Sept1)4Aam weighed less than wild type littermates displayed hyperactivity and no social deficits. Cntnap2 homozygous null mice were also hyperactive, froze less during testing, showed a mild gait phenotype and deficits in the three-chamber social preference test, although less robust than previously published. In the open field test with exposure to urine of an estrous female, however, the Cntnap2 null mice showed reduced vocalizations. In addition, Cntnap2 null mice performed slightly better in a cognitive procedural learning test. Although finding and replicating robust behavioral phenotypes in animal models is a challenging task, such functional readouts remain important in the development of therapeutics and we anticipate both our positive and negative findings will be utilized as a resource for the broader scientific community
Do symptoms of anxiety and/or depression and pain intensity before primary Total knee arthroplasty influence reason for revision? Results of an observational study from the Dutch arthroplasty register in 56,233 patients
Objective: Anxiety, depression and greater pain intensity before total knee arthroplasty (TKA) may increase the probability of revision surgery for remaining symptoms even without clear pathology or technical issues. We aimed to assess whether preoperative anxiety/depression and pain intensity are associated with revision TKA for less clear indications. Methods: Less clear indications for revision were defined after a Delphi process in which consensus was reached among 59 orthopaedic knee experts. We performed a cox regression analyses on primary TKA patients registered in the Dutch Arthroplasty Registry (LROI) who completed the EuroQol 5D 3 L (EQ5D-3 L) anxiety/depression score to examine associations between preoperative anxiety/depression and pain (Numeric Rating Scale (NRS)) with TKA revision for less clear reasons. These analyses were adjusted for age, BMI, sex, smoking, ASA score, EQ5D-3 L thermometer and OKS score. Results: In total, 25.9% patients of the 56,233 included patients reported moderate or severe symptoms of anxiety/depression on the EQ5D-3 L anxiety/depression score. Of those, 615 revisions (45.5%) were performed for less clear reasons for revision (patellar pain, malalignment, instability, progression of osteoarthritis or arthrofibrosis). Not EQ5D-3 L anxiety/depression score, but higher NRS pain at rest and EQ5D-3 L pain score were associated with revision for less clear reason (HR: 1.058, 95% CI 1.019-1.099 & HR: 1.241, 95% CI 1.044-1.476, respectively). Conclusion: Our findings suggest that pain intensity is a risk factor for TKA revision for a less clear reason. The finding that preoperative pain intensity was associated with reason for revision confirms a likely influence of subjective, personal factors on offer and acceptance of TKA revision. The association between anxiety/depression and reason for revision after TKA may also be found when including more specific outcome measures to assess anxiety/depression and we therefore hope to encourage further research on this topic with our study, ideally in a prospective setting. Study design: Longitudinal Cohort Study Level III, Delphi Consensu
Imbalanced social-communicative and restricted repetitive behavior subtypes of autism spectrum disorder exhibit different neural circuitry
Social-communication (SC) and restricted repetitive behaviors (RRB) are autism diagnostic symptom domains. SC and RRB severity can markedly differ within and between individuals and may be underpinned by different neural circuitry and genetic mechanisms. Modeling SC-RRB balance could help identify how neural circuitry and genetic mechanisms map onto such phenotypic heterogeneity. Here, we developed a phenotypic stratification model that makes highly accurate (97-99%) out-of-sample SCâ=âRRB, SCâ>âRRB, and RRBâ>âSC subtype predictions. Applying this model to resting state fMRI data from the EU-AIMS LEAP dataset (nâ=â509), we find that while the phenotypic subtypes share many commonalities in terms of intrinsic functional connectivity, they also show replicable differences within some networks compared to a typically-developing group (TD). Specifically, the somatomotor network is hypoconnected with perisylvian circuitry in SCâ>âRRB and visual association circuitry in SCâ=âRRB. The SCâ=âRRB subtype show hyperconnectivity between medial motor and anterior salience circuitry. Genes that are highly expressed within these networks show a differential enrichment pattern with known autism-associated genes, indicating that such circuits are affected by differing autism-associated genomic mechanisms. These results suggest that SC-RRB imbalance subtypes share many commonalities, but also express subtle differences in functional neural circuitry and the genomic underpinnings behind such circuitry
Operant Sensation Seeking Requires Metabotropic Glutamate Receptor 5 (mGluR5)
Pharmacological and genetic studies have suggested that the metabotropic glutamate receptor 5 (mGluR5) is critically involved in mediating the reinforcing effects of drugs of abuse, but not food. The purpose of this study was to use mGluR5 knockout (KO), heterozygous (Het), and wildtype (WT) mice to determine if mGluR5 modulates operant sensation seeking (OSS), an operant task that uses varied sensory stimuli as a reinforcer. We found that mGluR5 KO mice had significantly reduced OSS responding relative to WT mice, while Het mice displayed a paradoxical increase in OSS responding. Neither KO nor Het mice exhibited altered operant responding for food as a reinforcer. Further, we assessed mGluR5 KO, Het and WT mice across a battery of cocaine locomotor, place preference and anxiety related tests. Although KO mice showed expected differences in some locomotor and anxiety measures, Het mice either exhibited no phenotype or an intermediate one. In total, these data demonstrate a key role for mGluR5 in OSS, indicating an important role for this receptor in reinforcement-based behavior
Selective mGluR1 Antagonist EMQMCM Inhibits the Kainate-Induced Excitotoxicity in Primary Neuronal Cultures and in the Rat Hippocampus
Abundant evidence suggests that indirect inhibitory modulation of glutamatergic transmission, via metabotropic glutamatergic receptors (mGluR), may induce neuroprotection. The present study was designed to determine whether the selective antagonist of mGluR1 (3-ethyl-2-methyl-quinolin-6-yl)-(4-methoxy-cyclohexyl)-methanone methanesulfonate (EMQMCM), showed neuroprotection against the kainate (KA)-induced excitotoxicity in vitro and in vivo. In in vitro studies on mouse primary cortical and hippocampal neuronal cultures, incubation with KA (150Â ÎźM) induced strong degeneration [measured as lactate dehydrogenase (LDH) efflux] and apoptosis (measured as caspase-3 activity). EMQMCM (0.1â100Â ÎźM) added 30Â min to 6Â h after KA, significantly attenuated the KA-induced LDH release and prevented the increase in caspase-3 activity in the cultures. Those effects were dose- and time-dependent. In in vivo studies KA (2.5Â nmol/1Â Îźl) was unilaterally injected into the rat dorsal CA1 hippocampal region. Degeneration was calculated by counting surviving neurons in the CA pyramidal layer using stereological methods. It was found that EMQMCM (5â10Â nmol/1Â Îźl) injected into the dorsal hippocampus 30Â min, 1Â h, or 3Â h (the higher dose only) after KA significantly prevented the KA-induced neuronal degeneration. In vivo microdialysis studies in rat hippocampus showed that EMQMCM (100Â ÎźM) significantly increased Îł-aminobutyric acid (GABA) and decreased glutamate release. When perfused simultaneously with KA, EMQMCM substantially increased GABA release and prevented the KA-induced glutamate release. The obtained results indicate that the mGluR1 antagonist, EMQMCM, may exert neuroprotection against excitotoxicity after delayed treatment (30Â min to 6Â h). The role of enhanced GABAergic transmission in the neuroprotection is postulated
Desire and Dread from the Nucleus Accumbens: Cortical Glutamate and Subcortical GABA Differentially Generate Motivation and Hedonic Impact in the Rat
Background: GABAergic signals to the nucleus accumbens (NAc) shell arise from predominantly subcortical sources whereas glutamatergic signals arise mainly from cortical-related sources. Here we contrasted GABAergic and glutamatergic generation of hedonics versus motivation processes, as a proxy for comparing subcortical and cortical controls of emotion. Local disruptions of either signals in medial shell of NAc generate intense motivated behaviors corresponding to desire and/or dread, along a rostrocaudal gradient. GABA or glutamate disruptions in rostral shell generate appetitive motivation whereas disruptions in caudal shell elicit fearful motivation. However, GABA and glutamate signals in NAc differ in important ways, despite the similarity of their rostrocaudal motivation gradients. Methodology/Principal Findings: Microinjections of a GABAA agonist (muscimol), or of a glutamate AMPA antagonist (DNQX) in medial shell of rats were assessed for generation of hedonic ââlikingâ â or ââdislikingâ â by measuring orofacial affective reactions to sucrose-quinine taste. Motivation generation was independently assessed measuring effects on eating versus natural defensive behaviors. For GABAergic microinjections, we found that the desire-dread motivation gradient was mirrored by an equivalent hedonic gradient that amplified affective taste ââlikingâ â (at rostral sites) versus ââdislikingâ â (at caudal sites). However, manipulation of glutamatergic signals completely failed to alter pleasure-displeasure reactions to sensory hedonic impact, despite producing a strong rostrocaudal gradient of motivation
Saccade dysmetria indicates attenuated visual exploration in autism spectrum disorder
Background: Visual exploration in autism spectrum disorder (ASD) is characterized by attenuated social attention. The underlying oculomotor function during visual exploration is understudied, whereas oculomotor function during restricted viewing suggested saccade dysmetria in ASD by altered pontocerebellar motor modulation. Methods: Oculomotor function was recorded using remote eye tracking in 142 ASD participants and 142 matched neurotypical controls during free viewing of naturalistic videos with and without human content. The sample was heterogenous concerning age (6â30 years), cognitive ability (60â140 IQ), and male/female ratio (3:1). Oculomotor function was defined as saccade, fixation, and pupil-dilation features that were compared between groups in linear mixed models. Oculomotor function was investigated as ASD classifier and features were correlated with clinical measures. Results: We observed decreased saccade duration (âM = â0.50, CI [â0.21, â0.78]) and amplitude (âM = â0.42, CI [â0.12, â0.72]), which was independent of human video content. We observed null findings concerning fixation and pupil-dilation features (POWER =.81). Oculomotor function is a valid ASD classifier comparable to social attention concerning discriminative power. Within ASD, saccade features correlated with measures of restricted and repetitive behavior. Conclusions: We conclude saccade dysmetria as ASD oculomotor phenotype relevant to visual exploration. Decreased saccade amplitude and duration indicate spatially clustered fixations that attenuate visual exploration and emphasize endogenous over exogenous attention. We propose altered pontocerebellar motor modulation as underlying mechanism that contributes to atypical (oculo-)motor coordination and attention function in ASD
Preference for biological motion is reduced in ASD: implications for clinical trials and the search for biomarkers
Background: The neurocognitive mechanisms underlying autism spectrum disorder (ASD) remain unclear. Progress has been largely hampered by small sample sizes, variable age ranges and resulting inconsistent findings. There is a pressing need for large definitive studies to delineate the nature and extent of key case/control differences to direct research towards fruitful areas for future investigation. Here we focus on perception of biological motion, a promising index of social brain function which may be altered in ASD. In a large sample ranging from childhood to adulthood, we assess whether biological motion preference differs in ASD compared to neurotypical participants (NT), how differences are modulated by age and sex and whether they are associated with dimensional variation in concurrent or later symptomatology. Methods: Eye-tracking data were collected from 486 6-to-30-year-old autistic (N = 282) and non-autistic control (N = 204) participants whilst they viewed 28 trials pairing biological (BM) and control (non-biological, CTRL) motion. Preference for the biological motion stimulus was calculated as (1) proportion looking time difference (BM-CTRL) and (2) peak look duration difference (BM-CTRL). Results: The ASD group showed a present but weaker preference for biological motion than the NT group. The nature of the control stimulus modulated preference for biological motion in both groups. Biological motion preference did not vary with age, gender, or concurrent or prospective social communicative skill within the ASD group, although a lack of clear preference for either stimulus was associated with higher social-communicative symptoms at baseline. Limitations: The paired visual preference we used may underestimate preference for a stimulus in younger and lower IQ individuals. Our ASD group had a lower average IQ by approximately seven points. 18% of our sample was not analysed for various technical and behavioural reasons. Conclusions: Biological motion preference elicits small-to-medium-sized caseâcontrol effects, but individual differences do not strongly relate to core social autism associated symptomatology. We interpret this as an autistic difference (as opposed to a deficit) likely manifest in social brain regions. The extent to which this is an innate difference present from birth and central to the autistic phenotype, or the consequence of a life lived with ASD, is unclear
- âŚ