43 research outputs found

    Synthesis and Characterization of a Colloidal Novel Folic Acid–β-cyclodextrin Conjugate for Targeted Drug Delivery

    Get PDF
    A novel folic acid–b-cyclodextrin (b-CD) conjugate was synthesized and preliminarily characterized by 1H NMR, ESI-MS, and MALDI-MS. 1H NMR shows the presence of a- and c-conjugates which are generated by b-CD linkage in turn with both carboxylic functions of folic acid. Moreover ROESY evidences supramolecular interactions between the benzene ring of the folic acid and the b-CD cavity. DOSY suggests that ethylenediamine derived b-CD–folic acid forms a colloidal dispersion difficult to purify from free folic acid. An analysis of self-diffusion coefficient (Ds) of the three species (a-, c-conjugates, and free folic acid) and relaxation times (T1 and T2) is reported to tentatively explain the colloidal behaviour of the new species in an aqueous solution

    Selective leaching of copper and zinc from primary ores and secondary mineral residues using biogenic ammonia

    Get PDF
    With the number of easily accessible ores depleting, alternate primary and secondary sources are required to meet the increasing demand of economically important metals. Whilst highly abundant, these materials are of lower grade with respect to traditional ores, thus highly selective and sustainable metal extraction technologies are needed to reduce processing costs. Here, we investigated the metal leaching potential of biogenic ammonia produced by a ureolytic strain of Lysinibacillus sphaericus on eight primary and secondary materials, comprised of mining and metallurgical residues, sludges and automotive shredder residues (ASR). For the majority of materials, moderate to high yields (30–70%) and very high selectivity (>97% against iron) of copper and zinc were obtained with 1 mol L−1 total ammonia. Optimal leaching was achieved and further refined for the ASR in a two-step indirect leaching system with biogenic ammonia. Copper leaching was the result of local corrosion and differences in leaching against the synthetic (NH4)2CO3 control could be accounted for by pH shifts from microbial metabolism, subsequently altering free NH3 required for coordination. These results provide important findings for future sustainable metal recovery technologies from secondary materials.This work was conducted under the financial support of the Strategic Initiative Materials in Flanders (SIM) (SBO-SMART: Sustainable Metal Extraction from Tailings, grant no. HBC.2016.0456) and the European Union’s Horizon 2020 research and innovation programme, Metal Re-covery from Low-Grade Ores and Wastes Plus (METGROW+, grant no. 690088) . FV acknowledges support by the Flemish Agency for Inno-vation and Entrepreneurship (Vlaio) via a Baekeland PhD fellowship (HBC.2017.0224) and by the Research & Development Umicore Group. We would like to thank Pieter Ostermeyer and Karel Folens for assis-tance with thermodynamic modelling and CMET and ECOCHEM group members and SMART/METGROW+partners for valuable discussions throughout the projec

    Bioleaching of metals from secondary materials using glycolipid biosurfactants

    Get PDF
    With the global demand for economically important metals increasing, compounded by the depletion of readily accessible ores, secondary resources and low-grade ores are being targeted to meet growing demands. Novel technologies developed within biobased industries, such as microbial biosurfactants, could be implemented to improve the sustainability of traditional hydrometallurgy techniques. This study investigates newly developed microbial biosurfactants (acidic- and bolaform glycolipids) for the leaching of metals (particularly Cu and Zn) from a suite of mine tailings, metallurgical sludges and automotive shredder residues. Generally, acidic sophorolipids were the most performant, and optimal Cu leaching was observed from a fayalite slag (27%) and a copper sulfide mine tailing (53%). Further investigation of the leached fayalite material showed that leaching was occurring from small metallic Cu droplets in this material via a corrosion-based mechanism, and/or from Cu-Pb sulfides, selective against dominant Fe-silicate matrices. This study highlights that acidic sophorolipid microbial biosurfactants have the potential to leach Cu and Zn from low-grade secondary materials. It also provides important fundamental insights into biosurfactant-metal and mineral interactions that are currently unexplored. Together, the convergence of leaching and mining industries with bio-industries can improve material recovery and will positively impact the bio- and circular economies and the environment.The authors thank Bio Base Europe Pilot plant for supplying the biosurfactants that enabled the execution of the leaching experiments. We also thank Joachim Neri, Karel Folens, Nina Ricci Nicomel and Melgü Kizilmese for their assistance during ICP-analyses

    Near-zero-waste processing of low-grade, complex primary ores and secondary raw materials in Europe: technology development trends

    Get PDF
    With an increasing number of low-grade primary ores starting to be cog-effectively mined, we are at the verge of mining a myriad of low-grade primary and secondary mineral materials. At the same time, mining practices and mineral waste recycling are both evolving towards sustainable near-zero-waste processing of low-grade resources within a circular economy that requires a shift in business models, policies and improvements in process technologies. This review discusses the evolution towards low-grade primary ore and secondary raw material mining that will allow for sufficient supply of critical raw materials as well as base metals. Seven low-grade ores, including primary (Greek and Polish laterites) and secondary (fayalitic slags, jarosite and goethite sludges, zincrich waste treatment sludge and chromium-rich neutralisation sludge) raw materials are discussed as typical examples for Europe. In order to treat diverse and complex low-grade ores efficiently, the use of a new metallurgical systems toolbox is proposed, which is populated with existing and innovative unit operations: (i) mineral processing, (ii) metal extraction, (iii) metal recovery and (iv) matrix valorisation. Several promising novel techniques are under development for these four unit-operations. From an economical and environmental point of view, such processes must be fitted into new (circular) business models, whereby impacts and costs are divided over the entire value chain. Currently, low-grade secondary raw material processing is only economic and environmentally beneficial when the mineral residues can be valorised and landfill costs are avoided and/or incentives for waste processing can be taken into account

    Hydrothermal synthesis of manganites

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Adsorption performance of functionalized chitosan-silica hybrid materials toward rare earths

    No full text
    Chitosan–silica hybrid adsorbents were prepared and functionalized with ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA). The method consisted of sol–gel hybridization of chitosan and silica, followed by the addition of anhydrides to graft EDTA- and DTPA-ligands on the amine groups of the chitosan moieties in the hybrid particles. The resulting adsorbents were characterized by a range of analytical techniques: FTIR, BET, SEM, TGA, ICP and CHN. Coordination of Eu(III) to immobilized EDTA- and DTPA-groups was investigated by luminescence spectroscopy. The adsorption performance of the chitosan–silica adsorbents was investigated for Nd(III) as a function of the contact time, the pH of the aqueous feed and the adsorbent mass. Stripping and reusability studies were performed for both EDTA-chitosan–silica and DTPA-chitosan–silica. Differences in affinity amongst the rare-earth ions were investigated for DTPA-chitosan–silica in mono-component solutions of five rare earths (La, Nd, Eu, Dy and Lu). The order of affinity was in agreement with the trend in stability constants for the respective rare-earth ions with non-immobilized DTPA (bearing five available carboxylic acid groups). Multi-element mixtures were used to determine the selectivity of the adsorption process. Special attention was paid to separation of Nd and Dy, since these elements are relevant to the recovery of rare earths from End-of-Life permanent magnets.crosscheck: This document is CrossCheck deposited related_data: Supplementary Information identifier: Jeroen Spooren (ResearcherID) copyright_licence: The Royal Society of Chemistry has an exclusive publication licence for this journal copyright_licence: The accepted version of this article will be made freely available after a 12 month embargo period history: Received 31 August 2014; Accepted 16 September 2014; Accepted Manuscript published 16 September 2014; Advance Article published 17 October 2014; Version of Record published 28 October 2014status: publishe
    corecore