25 research outputs found

    Rapid quantification of mcyB copy numbers on dry chemistry PCR chips and predictability of microcystin concentrations in freshwater environments

    Get PDF
    Microcystin-producing cyanobacteria cause serious water quality problems worldwide, which has led to growing pressure for more intensive monitoring. Molecular biology methods that are based on identification and enumeration of biosynthetic genes, such as quantitative PCR, show promise in this respect. To be practical in a wide range of settings, these methods need to be usable also by laboratory personnel who do not have previous experience in PCR setup. Here we present a real-time quantitative mcyB dry chemistry PCR assay capable of identifying the three globally most common microcystin-producing cyanobacterial genera, Anabaena, Microcystis and Planktothrix. It minimizes the amount of liquid handling and avoids direct contact with the PCR reagents at the time of analysis. Large quantities of virtually identical chips can be manufactured, improving the comparability of results. Using the dry chemistry PCR chips, freshwater environmental samples from Finnish and Estonian lakes, rivers and reservoirs were analyzed for mcyB. The chip format was found to be highly suitable for water sample analysis due to its ease-of-use, good sensitivity and amplification efficiency. Significant positive correlation (Spearman&#39;s rank correlation, &rho;&nbsp;&gt;&nbsp;0.66, P&nbsp;&lt;&nbsp;0.001) was observed between combined mcyB copy numbers from Microcystis, Anabaena, Planktothrix and total microcystin concentrations, regardless of the method used to measure the toxins (ELISA or LC&ndash;MS). Positive correlations were observed also for single lakes.</p

    Non-competitive ELISA with broad specificity for microcystins and nodularins

    Get PDF
    Simple and cost-effective methods with sufficient sensitivities for preliminary screening of cyanobacterial toxins are in high demand for assessing water quality and safety. We have recently developed a highly sensitive and rapid time-resolved fluorometry based noncompetitive immunoassay for detection of microcystins and nodularins. The assay is based on a synthetic broad-specific anti-immunocomplexantibody SA51D1 capable of recognizing the immunocomplex formed by a generic anti-Adda monoclonal antibody (mAb) bound to either microcystins or nodularins. Using the same antibody pair, here we describe a very simple and cost-efficient non-competitive ELISA test for microcystins and nodularins based on conventional alkaline phosphatase (AP) activity measurement. The recombinant SA51D1 single-chain fragment of antibody variable domain (scFv) was produced as a fusion with bacterial alkaline phosphatase in Escherichia coli. After one step affinity purification through His-tag, the scFv-AP fusion protein could directly be used in the assay. For the assay, toxin standard/sample, biotinylated anti-Adda mAb and the scFv-AP were incubated together for one hour on streptavidin-coated microtiter wells, washed and AP activity was then measured by incubating (1 h at 37°C) with chromogenic substrate para-nitrophenylphosphate (pNPP). The assay was capable of detecting all the eleven tested toxin variants (microcystin-LR, -dmLR, -RR, -dmRR, -YR, -LA -LY, -LF -LW, -WR, and nodularin-R) below WHO guide line value of 1 μg L–1. The detection limit (based on blank+3SD response) for microcystin-LR was 0.2 μg L–1. The assay was verified using spiked (0.25-4 μg L–1 of microcystin-LR) tap, river and lake water samples with recoveries from 64 to 101%. The assay showed good correlation (r2>0.9) with four reference methods for its performance in detecting extracted intracellular microcystin/nodularin from 17 natural surface water samples. The described easy-to-perform assay has a high potential to be used in resource-poor settings as quantitative measurements can be obtained using a simple ELISA reader or easy-to-interpret qualitative results by visual readout. Based on the non-competitive format, the assay does not need any chemical toxin conjugates and offers robustness as compared to the currently available competitive format assays.</p

    Cyanotoxin production in seven Ethiopian Rift Valley Lakes

    Get PDF
    We hypothesized that unusual deaths and illnesses in wild and domestic animals in lake areas of the Rift Valley south of Addis Ababa were caused by toxic cyanobacteria. In the first cyanotoxic analyses conducted in samples from Ethiopia, we found lakes Chamo, Abaya, Awassa, Chitu, Langano, Ziway, and Koka all had concentrations of microcystins (MC) ranging from trace to hazardous, whereas only traces less than limits of detection (LOD) of cylindrospermopsin (CYN) were found. In the December 2006 dry season we sampled the lakes for analyses of MC, CYN, species structures, and calculations of cyanobacteria biomass. We used the Uterm&ouml;hl technique to analyse cyanobacterial biomass and monitored MC toxins using HPLC-DAD, LC-ESI-MS-MRM, and ELISA-test and CYN with HPLC-DAD and ELISA. The various toxicity tests coincided well. In 4 of the lakes (Chamo, Langano, Ziway, and Koka), the inter-lake range of total MC concentration was 1.3&ndash;48 &mu;g L-1; in 3 (Abaya, Awassa, and Chitu), we found only traces of MC. Microcystis aeruginosa was the dominant species, with Microcystis panniformis, Anabaena spiroides, and Cylindrospermopsis spp. as subdominants. The MC concentration, especially in Lake Koka, exceeded levels for serious health hazards for humans, cattle, and wildlife

    Structures and Activity of New Anabaenopeptins Produced by Baltic Sea Cyanobacteria

    No full text
    Anabaenopeptins, bioactive cyclic hexapeptides, were isolated by preparative reversed-phase high performance liquid chromatography from an extract of Baltic Sea cyanobacterial bloom material composed of Nodularia spumigena (50%), Aphanizomenon flos-aquae (40%) and Dolichospermum spp. (10%). Five new anabaenopeptins and nine previously known anabaenopeptins were isolated, and their putative structures were determined by tandem mass spectrometry. The activity of the peptides against carboxypeptidase A and protein phosphatase 1 as well as chymotrypsin, trypsin and thrombin was tested. All anabaenopeptins inhibited carboxypeptidase A (apart from one anabaenopeptin variant) and protein phosphatase 1 with varying potency, but no inhibition against chymotrypsin, trypsin and thrombin was observed

    First Report of Cylindrospermopsin Production by Two Cyanobacteria (Dolichospermum mendotae and Chrysosporum ovalisporum) in Lake Iznik, Turkey

    No full text
    Cylindrospermopsin (CYN) is a cytotoxic alkaloid produced by cyanobacteria. The distribution of this toxin is expanding around the world and the number of cyanobacteria species producing this toxin is also increasing. CYN was detected for the first time in Turkey during the summer months of 2013. The responsible species were identified as Dolichospermum (Anabaena) mendotae and Chrysosporum (Aphanizomenon) ovalisporum. The D. mendotae increased in May, however, C. ovalisporum formed a prolonged bloom in August. CYN concentrations were measured by LC-MS/MS and ranged from 0.12 mu g.mg(-1) to 4.92 mu g.mg(-1) as dry weight, respectively. Both species were the only cyanobacteria actively growing and CYN production was attributed solely to these species. Despite CYN production by C. ovalisporum being a well-known phenomenon, to our knowledge, this is the first report of CYN found in D. mendotae bloom

    Diversity of Peptides Produced by Nodularia spumigena from Various Geographical Regions

    Get PDF
    Abstract: Cyanobacteria produce a great variety of non-ribosomal peptides. Among these compounds, both acute toxins and potential drug candidates have been reported. The profile of the peptides, as a stable and specific feature of an individual strain, can be used to discriminate cyanobacteria at sub-population levels. In our work, liquid chromatography-tandem mass spectrometry was used to elucidate the structures of non-ribosomal peptides produced by Nodularia spumigena from the Baltic Sea, the coastal waters of southern Australia and Lake Iznik in Turkey. In addition to known structures, 9 new congeners of spumigins, 4 aeruginosins and 12 anabaenopeptins (nodulapeptins) were identified. The production of aeruginosins by N. spumigena was revealed in this work for the first time. The isolates from the Baltic Sea appeared to be the richest source of the peptides; they also showed a higher diversity in peptide profiles. The Australian strains were characterized by similar peptide patterns, but distinct from those represented by the Baltic and Lake Iznik isolates. The results obtained with the application of the peptidomic approach were consistent wit
    corecore