133 research outputs found

    Fast Ion Effects During Test Blanket Module Simulation Experiments in DIII-D

    Full text link
    Fast beam-ion losses were studied in DIII-D in the presence of a scaled mockup of two Test Blanket Modules (TBM) for ITER. Heating of the protective tiles on the front of the TBM surface was found when neutral beams were injected and the TBM fields were engaged. The fast-ion core confinement was not significantly affected. Different orbit-following codes predict the formation of a hot spot on the TBM surface arising from beam-ions deposited near the edge of the plasma. The codes are in good agreement with each other on the total power deposited at the hot spot predicting an increase in power with decreasing separation between the plasma edge and the TBM surface. A thermal analysis of the heat flow through the tiles shows that the simulated power can account for the measured tile temperature rise. The thermal analysis, however, is very sensitive to the details of the localization of the hot spot which is predicted to be different among the various codes

    Progestogens to prevent preterm birth in twin pregnancies: an individual participant data meta-analysis of randomized trials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Preterm birth is the principal factor contributing to adverse outcomes in multiple pregnancies. Randomized controlled trials of progestogens to prevent preterm birth in twin pregnancies have shown no clear benefits. However, individual studies have not had sufficient power to evaluate potential benefits in women at particular high risk of early delivery (for example, women with a previous preterm birth or short cervix) or to determine adverse effects for rare outcomes such as intrauterine death.</p> <p>Methods/design</p> <p>We propose an individual participant data meta-analysis of high quality randomized, double-blind, placebo-controlled trials of progestogen treatment in women with a twin pregnancy. The primary outcome will be adverse perinatal outcome (a composite measure of perinatal mortality and significant neonatal morbidity). Missing data will be imputed within each original study, before data of the individual studies are pooled. The effects of 17-hydroxyprogesterone caproate or vaginal progesterone treatment in women with twin pregnancies will be estimated by means of a random effects log-binomial model. Analyses will be adjusted for variables used in stratified randomization as appropriate. Pre-specified subgroup analysis will be performed to explore the effect of progestogen treatment in high-risk groups.</p> <p>Discussion</p> <p>Combining individual patient data from different randomized trials has potential to provide valuable, clinically useful information regarding the benefits and potential harms of progestogens in women with twin pregnancy overall and in relevant subgroups.</p

    The Binding of Learning to Action in Motor Adaptation

    Get PDF
    In motor tasks, errors between planned and actual movements generally result in adaptive changes which reduce the occurrence of similar errors in the future. It has commonly been assumed that the motor adaptation arising from an error occurring on a particular movement is specifically associated with the motion that was planned. Here we show that this is not the case. Instead, we demonstrate the binding of the adaptation arising from an error on a particular trial to the motion experienced on that same trial. The formation of this association means that future movements planned to resemble the motion experienced on a given trial benefit maximally from the adaptation arising from it. This reflects the idea that actual rather than planned motions are assigned ‘credit’ for motor errors because, in a computational sense, the maximal adaptive response would be associated with the condition credited with the error. We studied this process by examining the patterns of generalization associated with motor adaptation to novel dynamic environments during reaching arm movements in humans. We found that these patterns consistently matched those predicted by adaptation associated with the actual rather than the planned motion, with maximal generalization observed where actual motions were clustered. We followed up these findings by showing that a novel training procedure designed to leverage this newfound understanding of the binding of learning to action, can improve adaptation rates by greater than 50%. Our results provide a mechanistic framework for understanding the effects of partial assistance and error augmentation during neurologic rehabilitation, and they suggest ways to optimize their use.Alfred P. Sloan FoundationMcKnight Endowment Fund for Neuroscienc

    Publisher Correction: Demonstration of reduced neoclassical energy transport in Wendelstein 7-X

    Get PDF

    Demonstration of reduced neoclassical energy transport in Wendelstein 7-X

    Get PDF

    Towards a new image processing system at Wendelstein 7-X: From spatial calibration to characterization of thermal events

    Get PDF
    Wendelstein 7-X (W7-X) is the most advanced fusion experiment in the stellarator line and is aimed at proving that the stellarator concept is suitable for a fusion reactor. One of the most important issues for fusion reactors is the monitoring of plasma facing components when exposed to very high heat loads, through the use of visible and infrared (IR) cameras. In this paper, a new image processing system for the analysis of the strike lines on the inboard limiters from the first W7-X experimental campaign is presented. This system builds a model of the IR cameras through the use of spatial calibration techniques, helping to characterize the strike lines by using the information given by real spatial coordinates of each pixel. The characterization of the strike lines is made in terms of position, size, and shape, after projecting the camera image in a 2D grid which tries to preserve the curvilinear surface distances between points. The description of the strike-line shape is made by means of the Fourier Descriptors

    Forward modeling of collective Thomson scattering for Wendelstein 7-X plasmas: Electrostatic approximation

    Get PDF
    In this paper, we present a method for numerical computation of collective Thomson scattering (CTS). We developed a forward model, eCTS, in the electrostatic approximation and benchmarked it against a full electromagnetic model. Differences between the electrostatic and the electromagnetic models are discussed. The sensitivity of the results to the ion temperature and the plasma composition is demonstrated. We integrated the model into the Bayesian data analysis framework Minerva and used it for the analysis of noisy synthetic data sets produced by a full electromagnetic model. It is shown that eCTS can be used for the inference of the bulk ion temperature. The model has been used to infer the bulk ion temperature from the first CTS measurements on Wendelstein 7-X
    corecore