11 research outputs found
Isolation and Characterization of Pseudomonas spp. Strains That Efficiently Decompose Sodium Dodecyl Sulfate
Due to their particular properties, detergents are widely used in household cleaning products, cosmetics, pharmaceuticals, and in agriculture as adjuvants tailoring the features of pesticides or other crop protection agents. The continuously growing use of these various products means that water soluble detergents have become one of the most problematic groups of pollutants for the aquatic and terrestrial environments. Thus it is important to identify bacteria having the ability to survive in the presence of large quantities of detergent and efficiently decompose it to non-surface active compounds. In this study, we used peaty soil sampled from a surface flow constructed wetland in a wastewater treatment plant to isolate bacteria that degrade sodium dodecyl sulfate (SDS). We identified and initially characterized 36 Pseudomonas spp. strains that varied significantly in their ability to use SDS as their sole carbon source. Five isolates having the closest taxonomic relationship to the Pseudomonas jessenii subgroup appeared to be the most efficient SDS degraders, decomposing from 80 to 100% of the SDS present in an initial concentration 1 g/L in less than 24 h. These isolates exhibited significant differences in degree of SDS degradation, their resistance to high detergent concentration (ranging from 2.5 g/L up to 10 g/L or higher), and in chemotaxis toward SDS on a plate test. Mass spectrometry revealed several SDS degradation products, 1-dodecanol being dominant; however, traces of dodecanal, 2-dodecanol, and 3-dodecanol were also observed, but no dodecanoic acid. Native polyacrylamide gel electrophoresis zymography revealed that all of the selected isolates possessed alkylsulfatase-like activity. Three isolates, AP3_10, AP3_20, and AP3_22, showed a single band on native PAGE zymography, that could be the result of alkylsulfatase activity, whereas for isolates AP3_16 and AP3_19 two bands were observed. Moreover, the AP3_22 strain exhibited a band in presence of both glucose and SDS, whereas in other isolates, the band was visible solely in presence of detergent in the culture medium. This suggests that these microorganisms isolated from peaty soil exhibit exceptional capabilities to survive in, and break down SDS, and they should be considered as a valuable source of biotechnological tools for future bioremediation and industrial applications
Retinal Degeneration Caused by Rod-Specific Dhdds Ablation Occurs without Concomitant Inhibition of ProteinN-Glycosylation
Dehydrodolichyl diphosphate synthase (DHDDS) catalyzes the committed step indolichol synthesis. Recessive mutations inDHDDScause retinitis pigmentosa(RP59), resulting in blindness. We hypothesized that rod photoreceptor-specificablation ofDhddswould cause retinal degeneration due to diminished dolichol-dependent proteinN-glycosylation.Dhddsflx/flxmice were crossed with rod-spe-cific Cre recombinase-expressing (Rho-iCre75) mice to generate rod-specificDhddsknockout mice (Dhddsflx/flxiCre+).In vivomorphological and electrophys-iological evaluation ofDhddsflx/flxiCre+retinas revealed mild retinal dysfunctionat postnatal (PN) 4 weeks, compared with age-matched controls; however, rapidphotoreceptor degeneration ensued, resulting in almost complete loss of rodsand cones by PN 6 weeks. Retina dolichol levels were markedly decreased byPN 4 weeks inDhddsflx/flxiCre+mice, relative to controls; despite this,N-glycosyl-ation of retinal proteins, including opsin (the dominant rod-specific glycoprotein),persisted inDhddsflx/flxiCre+mice. These findings challenge the conventionalmechanistic view of RP59 as a congenital disorder of glycosylation
Metabolism of N-acylated-dopamine.
N-oleoyl-dopamine (OLDA) is a novel lipid derivative of dopamine. Its biological action includes the interaction with dopamine and the transient receptor potential vanilloid (TRPV1) receptors. It seems to be synthesized in a dopamine-like manner, but there has been no information on its degradation. The aim of the study was, therefore, to determine whether OLDA metabolism proceeds the way dopamine proper does. We addressed the issue by examining the occurrence of O-methylation of exogenously supplemented OLDA via catechol-O-methyltransferase (COMT) under in vitro, ex vivo, and in vivo conditions using rat brain tissue. The results show that OLDA was methylated by COMT in all conditions studied, yielding the O-methylated derivative. The methylation was reversed by tolcapone, a potent COMT inhibitor, in a dose-dependent manner. We conclude that OLDA enters the metabolic pathway of dopamine. Methylation of OLDA may enhance its bioactive properties, such as the ability to interact with TRPV1 receptors
Dual Stimulus-Dependent Effect of Oenothera paradoxa
Although a growing body of evidence suggests that plant polyphenols can modulate human immune responses, their simultaneous action on monocyte and neutrophil oxidative burst is currently poorly understood. Based on the hypothesis that various polyphenols contained in plant extracts might affect the oxidative burst of phagocytes, we evaluated the effects of ethanolic O. paradoxa extract polyphenols on monocyte and neutrophil oxidative burst in vitro activated by different stimuli, including opsonized bacteria E. coli, phorbol 12-myristate 13-acetate (PMA), and formyl-methionyl-leucyl-phenylalanine (fMLP). Samples were analyzed by the dihydrorhodamine flow cytometry assay. Our results showed that the extract repressed significantly and dose-dependently reactive oxygen species production in both cell types stimulated with E. coli and PMA (P < 0.05) and its inhibitory efficiency was stimulus- and cell-type-dependent. Interestingly, there was significant stimulatory effect of the extract on bursting phagocytes induced by fMLP (P < 0.05). Additionally, several flavonoids and phenolic compounds as well as penta-galloyl-β-(D)-glucose (PGG), the representative of hydrolyzable tannins, were identified in the 60% extract by high-performance liquid chromatography (HPLC) coupled to electrospray ionization in negative ion mode. In summary, the ethanolic O. paradoxa extract, rich in flavonoids and phenolic compounds, exhibits dual stimulus-dependent effect on the respiratory burst in human leukocytes; hence, it might affect immune responses in humans
Methylation <i>in vitro</i> using commercially available COMT presented by the spectra of organic phases.
<p>(A) OLDA with COMT (continuous line); OLDA without COMT (dashed line); and <i>O</i>-Me-OLDA alone, a presumed reaction product, (dotted line). (B) OLDA with COMT (continuous line) and 1∶1 artificial mixture of OLDA and <i>O</i>-Me-OLDA (dotted line). The identity of the two spectra in Panel B points to the presence of OLDA and <i>O</i>-Me-OLDA in the reaction mixture. (C) Spectrum of the organic phase of the control mixture with no COMT added, incubated for the same length of time as was the full reaction with COMT.</p
Improved UHPLC-MS/MS Methods for Analysis of Isoprene-Derived Organosulfates
Secondary organic aerosol (SOA) is
an important yet not fully characterized
constituent of atmospheric particulate matter. A number of different
techniques and chromatographic methods are currently used for the
analysis of SOA, so the comparison of results from different laboratories
poses a challenge. So far, tentative structures have been suggested
for many organosulfur compounds that have been identified as markers
for the formation of SOA, including isoprene-derived organosulfates.
Despite the effectiveness and robustness of LC-MS/MS analyses, the
structural profiling of positional isomers of recently discovered
organosulfates with molecular weights (MWs) of 214 and 212 from isoprene
was entirely unsuccessful. Here, we developed a UHPLC combined with
high-resolution tandem mass spectrometric method that significantly
improves the separation efficiency and detection sensitivity of these
compounds in aerosol matrices. We discovered that selection of the
proper solvent for SOA extracts was a key factor in improving the
separation parameters. Later, we took advantage of the enhanced sensitivity,
combined with a short scan time window, to perform detailed structural
mass-spectrometric studies. For the first time, we elucidate a number
of isomers of the MW 214 and the MW 212 organosulfates and provide
strong evidence for their molecular structures. The structure of trihydroxyketone
sulfate MW 214 that we propose has not been previously reported. The
methods we designed can be easily applied in other laboratories to
foster an easy comparison of related qualitative and quantitative
data obtained throughout the world
Synthetic connectivity, emergence, and self-regeneration in the network of prebiotic chemistry
The challenge of prebiotic chemistry is to trace the syntheses of life's key building blocks from a handful of primordial substrates. Here we report a forward-synthesis algorithm that generates a full network of prebiotic chemical reactions accessible from these substrates under generally accepted conditions. This network contains both reported and previously unidentified routes to biotic targets, as well as plausible syntheses of abiotic molecules. It also exhibits three forms of nontrivial chemical emergence, as the molecules within the network can act as catalysts of downstream reaction types; form functional chemical systems, including self-regenerating cycles; and produce surfactants relevant to primitive forms of biological compartmentalization. To support these claims, computer-predicted, prebiotic syntheses of several biotic molecules as well as a multistep, self-regenerative cycle of iminodiacetic acid were validated by experiment
Isolation and Characterization of Pseudomonas spp. Strains That Efficiently Decompose Sodium Dodecyl Sulfate
Due to their particular properties, detergents are widely used in household cleaning products, cosmetics, pharmaceuticals, and in agriculture as adjuvants tailoring the features of pesticides or other crop protection agents. The continuously growing use of these various products means that water soluble detergents have become one of the most problematic groups of pollutants for the aquatic and terrestrial environments. Thus it is important to identify bacteria having the ability to survive in the presence of large quantities of detergent and efficiently decompose it to non-surface active compounds. In this study, we used peaty soil sampled from a surface flow constructed wetland in a wastewater treatment plant to isolate bacteria that degrade sodium dodecyl sulfate (SDS). We identified and initially characterized 36 Pseudomonas spp. strains that varied significantly in their ability to use SDS as their sole carbon source. Five isolates having the closest taxonomic relationship to the Pseudomonas jessenii subgroup appeared to be the most efficient SDS degraders, decomposing from 80 to 100% of the SDS present in an initial concentration 1 g/L in less than 24 h. These isolates exhibited significant differences in degree of SDS degradation, their resistance to high detergent concentration (ranging from 2.5 g/L up to 10 g/L or higher), and in chemotaxis toward SDS on a plate test. Mass spectrometry revealed several SDS degradation products, 1-dodecanol being dominant; however, traces of dodecanal, 2-dodecanol, and 3-dodecanol were also observed, but no dodecanoic acid. Native polyacrylamide gel electrophoresis zymography revealed that all of the selected isolates possessed alkylsulfatase-like activity. Three isolates, AP3_10, AP3_20, and AP3_22, showed a single band on native PAGE zymography, that could be the result of alkylsulfatase activity, whereas for isolates AP3_16 and AP3_19 two bands were observed. Moreover, the AP3_22 strain exhibited a band in presence of both glucose and SDS, whereas in other isolates, the band was visible solely in presence of detergent in the culture medium. This suggests that these microorganisms isolated from peaty soil exhibit exceptional capabilities to survive in, and break down SDS, and they should be considered as a valuable source of biotechnological tools for future bioremediation and industrial applications