1,793 research outputs found

    Thermal conductance of pressed aluminum and stainless steel contacts at liquid helium temperatures

    Get PDF
    The thermal conductance of aluminum and stainless steel 304 sample pairs with surface finishes ranging from 0.1 to 1.6 microns rms roughness was investigated over a temperature range from 1.6 to 6.0 k. The thermal conductance follows a simple power law function of temperature, with the exponent ranging from 0.5 to 2.25, increases asymptotically with increasing applied force, and exhibits an anomaly for surface finishes in the 0.4 micron region

    All order covariant tubular expansion

    Full text link
    We consider tubular neighborhood of an arbitrary submanifold embedded in a (pseudo-)Riemannian manifold. This can be described by Fermi normal coordinates (FNC) satisfying certain conditions as described by Florides and Synge in \cite{FS}. By generalizing the work of Muller {\it et al} in \cite{muller} on Riemann normal coordinate expansion, we derive all order FNC expansion of vielbein in this neighborhood with closed form expressions for the curvature expansion coefficients. Our result is shown to be consistent with certain integral theorem for the metric proved in \cite{FS}.Comment: 27 pages. Corrected an error in a class of coefficients resulting from a typo. Integral theorem and all other results remain unchange

    A New World Average Value for the Neutron Lifetime

    Full text link
    The analysis of the data on measurements of the neutron lifetime is presented. A new most accurate result of the measurement of neutron lifetime [Phys. Lett. B 605 (2005) 72] 878.5 +/- 0.8 s differs from the world average value [Phys. Lett. B 667 (2008) 1] 885.7 +/- 0.8 s by 6.5 standard deviations. In this connection the analysis and Monte Carlo simulation of experiments [Phys. Lett. B 483 (2000) 15] and [Phys. Rev. Lett. 63 (1989) 593] is carried out. Systematic errors of about -6 s are found in each of the experiments. The summary table for the neutron lifetime measurements after corrections and additions is given. A new world average value for the neutron lifetime 879.9 +/- 0.9 s is presented.Comment: 27 pages, 13 figures; Fig.13 update

    Drag resistance of 2D electronic microemulsions

    Full text link
    Motivated by recent experiments of Pillarisetty {\it et al}, \prl {\bf 90}, 226801 (2003), we present a theory of drag in electronic double layers at low electron concentration. We show that the drag effect in such systems is anomolously large, it has unusual temperature and magnetic field dependences accociated with the Pomeranchuk effect, and does not vanish at zero temperature

    Mesoscopic mechanism of adiabatic charge transport

    Full text link
    We consider adiabatic charge transport through mesoscopic metallic samples caused by a periodically changing external potential. We find that both the amplitude and the sign of the charge transferred through a sample per period are random sample specific quantities. The characteristic magnitude of the charge is determined by the quantum interference.Comment: 4 pages, 2 figure

    Effects of interaction on an adiabatic quantum electron pump

    Full text link
    We study the effects of inter-electron interactions on the charge pumped through an adiabatic quantum electron pump. The pumping is through a system of barriers, whose heights are deformed adiabatically. (Weak) interaction effects are introduced through a renormalisation group flow of the scattering matrices and the pumped charge is shown to {\it always} approach a quantised value at low temperatures or long length scales. The maximum value of the pumped charge is set by the number of barriers and is given by Qmax=nb1Q_{\rm max} = n_b -1. The correlation between the transmission and the charge pumped is studied by seeing how much of the transmission is enclosed by the pumping contour. The (integer) value of the pumped charge at low temperatures is determined by the number of transmission maxima enclosed by the pumping contour. The dissipation at finite temperatures leading to the non-quantised values of the pumped charge scales as a power law with the temperature (QQintT2αQ-Q_{\rm int} \propto T^{2\alpha}), or with the system size (QQintLs2αQ-Q_{\rm int} \propto L_s^{-2\alpha}), where α\alpha is a measure of the interactions and vanishes at T=0 (Ls=)T=0 ~(L_s=\infty). For a double barrier system, our result agrees with the quantisation of pumped charge seen in Luttinger liquids.Comment: 9 pages, 9 figures, better quality figures available on request from author

    Mesoscopic mechanism of exchange interaction in magnetic multilayers

    Full text link
    We discuss a mesoscopic mechanism of exchange interaction in ferromagnet-normal metal-ferromagnet multilayers. We show that in the case when the metal's thickness is larger than the electron mean free path, the relative orientation of magnetizations in the ferromagnets is perpendicular. The exchange energy between ferromagnets decays with the metal thickness as a power law

    A theory of \pi/2 superconducting Josephson junctions

    Full text link
    We consider theoretically a Josephson junction with a superconducting critical current density which has a random sign along the junction's surface. We show that the ground state of the junction corresponds to the phase difference equal to \pi/2. Such a situation can take place in superconductor- ferromagnet junction

    Brownian motion meets Riemann curvature

    Full text link
    The general covariance of the diffusion equation is exploited in order to explore the curvature effects appearing on brownian motion over a d-dimensional curved manifold. We use the local frame defined by the so called Riemann normal coordinates to derive a general formula for the mean-square geodesic distance (MSD) at the short-time regime. This formula is written in terms of O(d)O(d) invariants that depend on the Riemann curvature tensor. We study the n-dimensional sphere case to validate these results. We also show that the diffusion for positive constant curvature is slower than the diffusion in a plane space, while the diffusion for negative constant curvature turns out to be faster. Finally the two-dimensional case is emphasized, as it is relevant for the single particle diffusion on biomembranes.Comment: 16 pages and 3 figure

    Critical disorder effects in Josephson-coupled quasi-one-dimensional superconductors

    Full text link
    Effects of non-magnetic randomness on the critical temperature T_c and diamagnetism are studied in a class of quasi-one dimensional superconductors. The energy of Josephson-coupling between wires is considered to be random, which is typical for dirty organic superconductors. We show that this randomness destroys phase coherence between the wires and T_c vanishes discontinuously when the randomness reaches a critical value. The parallel and transverse components of the penetration depth are found to diverge at different critical temperatures T_c^{(1)} and T_c, which correspond to pair-breaking and phase-coherence breaking. The interplay between disorder and quantum phase fluctuations results in quantum critical behavior at T=0, manifesting itself as a superconducting-normal metal phase transition of first-order at a critical disorder strength.Comment: 4 pages, 2 figure
    corecore