258 research outputs found

    Distributed under Creative Commons CC-BY 4.0 OPEN ACCESS Personality, mental health and demographic correlates of hoarding behaviours in a midlife sample

    Get PDF
    ABSTRACT We describe the Temperament and Character Inventory personality traits, demographic features, physical and mental health variables associated with hoarding behaviour in a random community sample of midlife participants in New Zealand. A sample of 404 midlife participants was recruited to a study of ageing. To assess hoarding behaviours participants completed the Savings Inventory-Revised (SI-R), personality was assessed by the Temperament and Character Inventory and self-reported health was measured by the Short Form-36v2 (SF-36v2). Other measures were used to assess socio-demographic variables and current mental disorders. Participants were split into four groups by SI-R total score (scores: 0-4, 5-30, 31-41 and >41). Those who scored >41 on the SI-R were classified as having pathological hoarding. Trend tests were calculated across the four hoarding groups for socio-demographic, personality, mental and physical health variables. SI-R scores ranged from 0 to 58. The prevalence of pathological hoarding was 2.5% and a further 4% reported sub-clinical symptoms of hoarding. Higher hoarding behaviour scores were related to higher Temperament and Character Inventory scores for Harm Avoidance and lower scores for Self-directedness. Persistence and Cooperativeness scores were lower too but to a lesser extent. Trend analysis revealed that those with higher hoarding behaviour scores were more likely to be single, female, unemployed, receive income support, have a lower socio-economic status, lower household income and have poorer self-reported mental health scores. Current depression rates were considerably higher in the pathological hoarding group. Increasing SI-R hoarding behaviour scores were associated with higher scores of negative affect (Harm Avoidance) and lower scores of autonomy (Self-directedness). Those with pathological hoarding or sub-clinical symptoms of hoarding also reported widespread mental and socio-economic problems. In this study it is clear to see the physical, mental and socio-economic problems experienced by those achieving the highest hoarding scores. The prevalence of pathological hoarding was 2.5%, similar to the prevalence reported by other studies. The personality traits associated with hoarding behaviours are discussed. Subjects Psychiatry and Psychology, Public Healt

    The Acute and Chronic Cognitive Effects of a Sage Extract: A Randomized, Placebo Controlled Study in Healthy Humans

    Get PDF
    The sage (Salvia) plant contains a host of terpenes and phenolics which interact with mechanisms pertinent to brain function and improve aspects of cognitive performance. However, previous studies in humans have looked at these phytochemicals in isolation and following acute consumption only. A preclinical in vivo study in rodents, however, has demonstrated improved cognitive outcomes following 2-week consumption of CogniviaTM, a proprietary extract of both Salvia officinalis polyphenols and Salvia lavandulaefolia terpenoids, suggesting that a combination of phytochemicals from sage might be more efficacious over a longer period of time. The current study investigated the impact of this sage combination on cognitive functions in humans with acute and chronic outcomes. Participants (n = 94, 25 M, 69 F, 30–60 years old) took part in this randomised, double-blind, placebo-controlled, parallel groups design where a comprehensive array of cognitions were assessed 120- and 240-min post-dose acutely and following 29-day supplementation with either 600 mg of the sage combination or placebo. A consistent, significant benefit of the sage combination was observed throughout working memory and accuracy task outcome measures (specifically on the Corsi Blocks, Numeric Working Memory, and Name to Face Recall tasks) both acutely (i.e., changes within day 1 and day 29) and chronically (i.e., changes between day 1 to day 29). These results fall slightly outside of those reported previously with single Salvia administration, and therefore, a follow-up study with the single and combined extracts is required to confirm how these effects differ within the same cohort

    Do mycorrhizal network benefits to survival and growth of interior Douglas-fir seedlings increase with soil moisture stress?

    Get PDF
    Facilitation of tree establishment by ectomycorrhizal (EM) networks (MNs) may become increasingly important as drought stress increases with climate change in some forested regions of North America. The objective of this study was to determine (1) whether temperature, CO2 concentration ([CO2]), soil moisture, and MNs interact to affect plant establishment success, such that MNs facilitate establishment when plants are the most water stressed, and (2) whether transfer of C and water between plants through MNs plays a role in this. We established interior Douglas-fir (Pseudotsuga menziesiivar.glauca) seedlings in root boxes with and without the potential to form MNs with nearby conspecific seedlings that had consistent access to water via their taproots. We varied temperature, [CO2], and soil moisture in growth chambers. Douglas-fir seedling survival increased when the potential existed to form an MN. Growth increased with MN potential under the driest soil conditions, but decreased with temperature at 800 ppm [CO2]. Transfer of 13C to receiver seedlings was unaffected by potential to form an MN with donor seedlings, but deuterated water (D2O) transfer increased with MN potential under ambient [CO2]. Chlorophyll fluorescence was reduced when seedlings had the potential to form an MN under high [CO2] and cool temperatures. We conclude that Douglas-fir seedling establishment in laboratory conditions is facilitated by MN potential where Douglas-fir seedlings have consistent access to water. Moreover, this facilitation appears to increase as water stress potential increases and water transfer via networks may play a role in this. These results suggest that conservation of MN potential may be important to forest regeneration where drought stress increases with climate change

    Diagnosing a distributed hydrologic model for two high-elevation forested catchments based on detailed stand- and basin-scale data

    Get PDF
    This study evaluates the performance and internal structure of the distributed hydrology soil vegetation model (DHSVM) using 1998-2001 data collected at Upper Penticton Creek, British Columbia, Canada. It is shown that clear-cut snowmelt rates calculated using data-derived snow albedo curves are in agreement with observed lysimeter outflow. Measurements in a forest stand with 50% air crown closure suggest that the fraction of shortwave radiation transmitted through the canopy is 0.18-0.28 while the hemispherical canopy view factor controlling longwave radiation fluxes to the forest snowpack is estimated at 0.81 ± 0.07. DHSVM overestimates shortwave transmittance (0.50) and underestimates the view factor (0.50). An alternative forest radiation balance is formulated that is consistent with the measurements. This new formulation improves model efficiency in simulating streamflow from 0.84 to 0.91 due to greater early season melt that results from the enhanced importance of longwave radiation below the canopy. The model captures differences in canopy rainfall interception between small and large storms, tree transpiration measured over a 6-day summer period, and differences in soil moisture between a dry and a wet summer. While the model was calibrated to 1999 snow water equivalent (SWE) and hydrograph data for the untreated control basin, it successfully simulates forest and clear-cut SWE and streamflow for the 3 other years and 4 years of preharvesting and postharvesting streamflow for the second basin. Comparison of model states with the large array of observations suggests that the modified model provides a reliable tool for assessing forest management impacts in the region.Mark Thyer, Jos Beckers, Dave Spittlehouse, Younes Alila, and Rita Winkle

    Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America

    Get PDF
    Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment’s change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period – a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of inter annual variation in potential ET divided by P (PET/P; dryness index) to inter annual variation in the EI – high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., non-resilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to climate warming than the more diverse mixed forest catchments

    Effect of Groundwater Pumping on Seawater Intrusion in Coastal Aquifers

    Get PDF
    Many aquifers around the globe are located in coastal areas and are thus subjected to the seawater intrusion phenomenon. The growth of population in coastal areas and the conjugate increase in human, agricultural, and industrial activities have imposed an increasing demand for freshwater. This increase in water demand is often covered by extensive pumping of fresh groundwater, causing subsequent lowering of the water table (or piezometric head) and upsetting the dynamic balance between freshwater and saline water bodies. The classical result of such a development is seawater intrusion. This paper presents a review for the seawater intrusion phenomenon in coastal aquifers. The effect of pumping activities on the seawater intrusion in the Nile Delta aquifer of Egypt is investigated. It was concluded that any additional pumping should be located in the middle Delta and avoided in the eastern and western sides of the Delta

    Periprosthetic DXA after total hip arthroplasty with short vs. ultra-short custom-made femoral stems

    Get PDF
    Background and purpose Dual-energy X-ray absorptiometry (DXA) analysis of the 7 periprosthetic Gruen zones is the most commonly used protocol to evaluate bone remodeling after the implantation of conventional femoral stems. We assessed the value of DXA after cementless primary total hip arthroplasty (THA) by comparing the effect of progressive shortening of the stem of two femoral implants on periprosthetic bone remodeling using a specifically developed protocol of analysis with 5 periprosthetic regions of interest (ROIs)
    corecore