444 research outputs found

    Design and characterization of all-cryogenic low phase-noise sapphire K-band oscillator for sattelite communication

    Get PDF
    An all-cryogenic oscillator consisting of a frequency-tunable sapphire resonator, a high-temperature superconducting filter and a pseudomorphic high electron-mobility transistor amplifier was designed for the K-band frequency range and investigated. Due to the high quality factor of the resonator above 1000 000 and the low amplifier phase noise of approximately -133 dBc/Hz at a frequency offset of 1kHz from the carrier, we have achieved oscillator phase-noise values superior to quartz-stabilized oscillators at the same carrier frequency for offset frequencies higher than 100 Hz. In addition to, low phase noise, our prototype oscillator possesses mechanical and electrical frequency tunability. We have implemented a two-step electrical tuning arrangement consisting of a varactor phase shifter integrated within the amplifier circuit (fine tuning by 5'kHz) and a dielectric plunger moved by a piezomechanical transducer inside the resonator housing (course tuning by 50 kHz). This tuning range is sufficient for phase locking and for electronic compensation of temperature drifts occurring during operation of the device employing a miniaturized closed-cycle Stirling-type cryocooler

    A Ca2+-activated potassium channel (BKCa) in Leydig cells is involved in testosterone production

    Get PDF
    Previously, we found that human steroid-producing ovarian granulosa cells express all major types of Ca2+-activated potassium channels (KCa), including BKCa, IK and SKs (Traut et al., RB&E, 2009), and that modulation of the activity of these channels resulted in alteration of steroid production. In the male gonad Leydig cells produce androgens, but whether these cells are endowed with KCas is not known. We addressed these points and focussed on BKCa, which is Ca2+-activated and the underlying channel for a prominent current. It can be manipulated, e.g. by a specific blocker, the red scorpion toxin iberiotoxin (IbTx), which binds to the outer face with high affinity and selectively inhibits the current by decreasing both the probability of opening and the open time of the channel.Fil: Siebert, S. Ludwig Maximilians Universität München. ; AlemaniaFil: Spinnler, K. Ludwig Maximilians Universität München. ; AlemaniaFil: Matzkin, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Kunz, L. Ludwig Maximilians Universität München. ; AlemaniaFil: Calandra, Ricardo Saul. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Frungieri, Monica Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Mayerhofer, A. Ludwig Maximilians Universität München. ; Alemania22. Jahrestagung der Deutschen Gesellschaft für Andrologie e VHamburgoAlemaniaDeutsche Gesellschaft für AndrologieConventus Congressmanagement und Marketing Gmb

    Data-aided single-carrier coherent receivers

    Get PDF
    Data-aided algorithms for coherent optic receivers are discussed as an extension of existing non-data aided methods. The concept presents a scalable approach with low implementation complexity and limited overhead for higher-order modulation formats

    The forebrain synaptic transcriptome is organized by clocks but its proteome is driven by sleep

    Full text link
    Neurons have adapted mechanisms to traffic RNA and protein into distant dendritic and axonal arbors. Taking a biochemical approach, we reveal that forebrain synaptic transcript accumulation shows overwhelmingly daily rhythms, with two-thirds of synaptic transcripts showing time-of-day-dependent abundance independent of oscillations in the soma. These transcripts formed two sharp temporal and functional clusters, with transcripts preceding dawn related to metabolism and translation and those anticipating dusk related to synaptic transmission. Characterization of the synaptic proteome around the clock demonstrates the functional relevance of temporal gating for synaptic processes and energy homeostasis. Unexpectedly, sleep deprivation completely abolished proteome but not transcript oscillations. Altogether, the emerging picture is one of a circadian anticipation of messenger RNA needs in the synapse followed by translation as demanded by sleep-wake cycles

    Implementing Neural Network-Based Equalizers in a Coherent Optical Transmission System Using Field-Programmable Gate Arrays

    Get PDF
    In this work, we demonstrate the offline FPGA realization of both recurrent and feedforward neural network (NN)-based equalizers for nonlinearity compensation in coherent optical transmission systems. First, we present a realization pipeline showing the conversion of the models from Python libraries to the FPGA chip synthesis and implementation. Then, we review the main alternatives for the hardware implementation of nonlinear activation functions. The main results are divided into three parts: a performance comparison, an analysis of how activation functions are implemented, and a report on the complexity of the hardware. The performance in Q-factor is presented for the cases of bidirectional long-short-term memory coupled with convolutional NN (biLSTM + CNN) equalizer, CNN equalizer, and standard 1-StpS digital back-propagation (DBP) for the simulation and experiment propagation of a single channel dual-polarization (SC-DP) 16QAM at 34 GBd along 17x70km of LEAF. The biLSTM+CNN equalizer provides a similar result to DBP and a 1.7 dB Q-factor gain compared with the chromatic dispersion compensation baseline in the experimental dataset. After that, we assess the Q-factor and the impact of hardware utilization when approximating the activation functions of NN using Taylor series, piecewise linear, and look-up table (LUT) approximations. We also show how to mitigate the approximation errors with extra training and provide some insights into possible gradient problems in the LUT approximation. Finally, to evaluate the complexity of hardware implementation to achieve 400G throughput, fixed-point NN-based equalizers with approximated activation functions are developed and implemented in an FPGA.Comment: Invited paper at Journal of Lightwave Technology - IEE

    Neuropsychiatric symptoms in 921 elderly subjects with dementia: a comparison between vascular and neurodegenerative types.

    Get PDF
    Objective:  i) to describe the neuropsychiatric profile of elderly subjects with dementia by comparing vascular (VaD) and degenerative dementias, i.e. dementia with Lewy bodies (DLB) and Alzheimer’s disease (AD); ii) to assess whether the severity and type of dementia are associated with clinically relevant neuropsychiatric symptoms (CR‐NPS). Method:  One hundred and thirty‐one out‐patients with VaD, 100 with DLB and 690 with AD were studied. NPS were evaluated by the neuropsychiatric inventory (NPI). Results:  Vascular dementia had lower total and domain‐specific NPI scores and a lower frequency of CR‐NPS than AD and DLB, for which frequency of CR‐NPS increased significantly with disease severity, particularly in AD. Logistic regression analysis showed that a higher CDR score and a diagnosis of degenerative dementia were independently associated with CR‐NPS. Conclusion:  Vascular dementia is associated less with CR‐NPS than AD and DLB. Frequency of CR‐NPS increases with disease severity in AD and, to a lesser extent, in DLB

    Degradation of III–V Quantum Dot Lasers Grown Directly on Silicon Substrates

    Get PDF
    Initial age-related degradation mechanisms for InAs quantum dot lasers grown on silicon substrates emitting at 1.3 μm are investigated. The rate of degradation is observed to increase for devices operated at higher carrier densities and is therefore dependent on gain requirement or cavity length. While carrier localization in quantum dots minimizes degradation, an increase in the number of defects in the early stages of aging can increase the internal optical-loss that can initiate rapid degradation of laser performance due to the rise in threshold carrier density. Population of the two-dimensional states is considered the major factor for determining the rate of degradation, which can be significant for lasers requiring high threshold carrier densities. This is demonstrated by operating lasers of different cavity lengths with a constant current and measuring the change in threshold current at regular intervals. A segmented-contact device, which can be used to measure the modal absorption and also operate as a laser, is used to determine how the internal optical-loss changes in the early stages of degradation. Structures grown on silicon show an increase in internal optical loss, whereas the same structure grown on GaAs shows no signs of increase in internal optical loss when operated under the same conditions

    DSP for Coherent Single-Carrier Receivers

    Full text link

    Development of a psychiatric disorder linked to cerebellar lesions

    Get PDF
    Cerebellar dysfunction plays a critical role in neurodevelopmental disorders with long-term behavioral and neuropsychiatric symptoms. A 43-year-old woman with a cerebellum arteriovenous malformation and history of behavioral dysregulation since childhood is described. After the rupture of the cerebellar malformation in adulthood, her behavior morphed into specific psychiatric symptoms and cognitive deficits occurred. The neuropsychological assessment evidenced impaired performance in attention, visuospatial, memory, and language domains. Moreover, psychiatric assessment indicated a borderline personality disorder. Brain MRI examination detected macroscopic abnormalities in the cerebellar posterior lobules VI, VIIa (Crus I), and IX, and in the posterior area of the vermis, regions usually involved in cognitive and emotional processing. The described patient suffered from cognitive and behavioral symptoms that are part of the cerebellar cognitive affective syndrome. This case supports the hypothesis of a cerebellar role in personality disorders emphasizing the importance of also examining the cerebellum in the presence of behavioral disturbances in children and adults
    corecore