92 research outputs found

    Development program on a Spindt cold-cathode electron gun

    Get PDF
    A thin film field emission cathode (TFFEC) array and a cold cathode electron gun based on the emitter were developed. A microwave tube gun that uses the thin film field emission cathode as an electron source is produced. State-of-the-art cathodes were fabricated and tested. The tip-packing density of the arrays were increased thereby increasing the cathode's current density capability. The TFFEC is based on the well known field emission effect and was conceived to exploit the advantages of that phenomenon while minimizing the difficulties associated with conventional field emission structures, e.g. limited life and high voltage requirements. Field emission follows the Fowler-Nordheim equation

    Spindt cold cathode electron gun development program

    Get PDF
    A thin film field emission cathode array and an electron gun based on this emitter array are summarized. Fabricating state of the art cathodes for testing at NASA and NRL, advancing the fabrication technology, developing wedge shaped emitters, and performing emission tests are covered. An anistropic dry etching process (reactive ion beam etching) developed that leads to increasing the packing density of the emitter tips to about 5 x 10 to the 6th power/square cm. Tests with small arrays of emitter tips having about 10 tips has demonstrated current densities of over 100 A/sq cm. Several times using cathodes having a packing density of 1.25 x 10 to the 6th power tips/sq cm. Indications are that the higher packing density achievable with the dry etch process may extend this capability to the 500 A/sq cm range and beyond. The wedge emitter geometry was developed and shown to produce emission. This geometry can (in principle) extend the current density capability of the cathodes beyond the 500 A/sq cm level. An emission microscope was built and tested for use with the cathodes

    Evaluation of volcano-style field ionization source and field emitting cathodes for mass spectrometry and applications

    Get PDF
    A volcano-style field ionization source was tested with eight different gases: hydrogen, helium, ammonia, methane, argon, neon, water vapor, and hydrogen sulfide. For ammonia, hydrogen sulfide, and water, the ionization efficiency of the field ionization source was determined as a function of the electrical potential difference between the ionizer and its counterelectrode. The ionization efficiencies for the other gases were too low to be measured in the present apparatus. The operating characteristics of a field emission cathode, were studied, in the presence of the same eight gases at pressures up to 0.00001 torr. The presence of the gases caused little or no significant change in the electron emission from the cathodes. Results indicate that the field emission cathode has advantages over electrically heated cathodes as a source of an electron beam in spacecraft mass spectrometers

    Development program on a cold cathode electron gun

    Get PDF
    A prototype electron gun with a field emitter cathode capable of producing 95 mA in a 1/4 mm diameter beam at 12 kV was produced. Achievement of this goal required supporting studies in cathode fabrication, cathode performance, gun design, cathode mounting and gun fabrication. A series of empirical investigations advanced fabrication technology: More stable emitters were produced and multiple cone failure caused by chain reaction discharges were reduced. The cathode is capable of producing well over 95 mA, but a substantial collector development effort was required to demonstrate emission levels in the 100 mA region. Space charge problems made these levels difficult to achieve. Recommendations are made for future process and materials investigation. Electron gun designs were modeled and tested. A pair of two-electrode gun structures were fabricated and tested; one gun was delivered to NASA. Cathodes were pretested up to 100 mA at SRI and delivered to NASA for test in the gun structure

    Accounting: A General Commentary on an Empirical Science

    Get PDF
    Many researchers have questioned the view of accounting as a science. Some maintain that it is a service activity rather than a science, yet others entertain the view that it is an art or merely a technology. While it is true that accounting provides a service and is a technology (a methodology for recording and reporting), that fact does not prevent accounting from being a science. Based upon the structure and knowledge base of the discipline, this paper presents the case for accounting as an empirical science
    • …
    corecore