3,399 research outputs found

    Development of a semipurified diet for the adult pocket mouse /Perognathus/

    Get PDF
    Semipurified diet effect on adult pocket mic

    Integrating process and factor understanding of environmental innovation by water utilities

    Get PDF
    Innovations in technology and organisations are central to enabling the water sector to adapt to major environmental changes such as climate change, land degradation or drinking water pollution. While there are literatures on innovation as a process and on the factors that influence it, there is little research that integrates these. Development of such an integrated understanding of innovation is central to understanding how policy makers and organisations can stimulate and direct environmental innovation. In the research reported here a framework is developed that enables such an integrated analysis of innovation process and factors. From research interviews and the literature twenty factors were identified that affect the five stages of the environmental innovation process in English and Welsh water utilities. The environmental innovations investigated are measures taken by water utilities to reduce or prevent pollution in drinking water catchments rather than technical measures to treat water. These Source Control Interventions are similar to other environmental innovations, such as ecosystem and species conservation, in that they emphasise the mix of technology, management and engagement with multiple actors. Results show that in water utilities direct performance regulation and regulation that raises awareness of a ‘performance’ gap as a ‘problem’ can stimulate innovation, but only under particular organisational, natural physical and regulatory conditions. The integrated framework also suggests that while flexible or framework legislation (e.g. Water Framework Directive) does not stimulate innovation in itself, it has shaped the option spaces and characteristics of innovations selected towards source control instead of technical end-of-pipe solutions

    Cool for Cats

    Get PDF
    The iconic Schr\"odinger's cat state describes a system that may be in a superposition of two macroscopically distinct states, for example two clearly separated oscillator coherent states. Quite apart from their role in understanding the quantum classical boundary, such states have been suggested as offering a quantum advantage for quantum metrology, quantum communication and quantum computation. As is well known these applications have to face the difficulty that the irreversible interaction with an environment causes the superposition to rapidly evolve to a mixture of the component states in the case that the environment is not monitored. Here we show that by engineering the interaction with the environment there exists a large class of systems that can evolve irreversibly to a cat state. To be precise we show that it is possible to engineer an irreversible process so that the steady state is close to a pure Schr\"odinger's cat state by using double well systems and an environment comprising two-photon (or phonon) absorbers. We also show that it should be possible to prolong the lifetime of a Schr\"odinger's cat state exposed to the destructive effects of a conventional single-photon decohering environment. Our protocol should make it easier to prepare and maintain Schr\"odinger cat states which would be useful in applications of quantum metrology and information processing as well as being of interest to those probing the quantum to classical transition.Comment: 10 pages, 7 figures. Significantly updated version with supplementary informatio

    Freezing distributed entanglement in spin chains

    Full text link
    We show how to freeze distributed entanglement that has been created from the natural dynamics of spin chain systems. The technique that we propose simply requires single-qubit operations and isolates the entanglement in specific qubits at the ends of branches. Such frozen entanglement provides a useful resource, for example for teleportation or distributed quantum processing. The scheme can be applied to a wide range of systems -- including actual spin systems and alternative qubit embodiments in strings of quantum dots, molecules or atoms.Comment: 5 pages, to appear in Phys. Rev. A (Rapid Communication

    Some Remarks on Quantum Coherence

    Full text link
    There are many striking phenomena which are attributed to ``quantum coherence''. It is natural to wonder if there are new quantum coherence effects waiting to be discovered which could lead to interesting results and perhaps even practical applications. A useful starting point for such discussions is a definition of ``quantum coherence''. In this article I give a definition of quantum coherence and use a number of illustrations to explore the implications of this definition. I point to topics of current interest in the fields of cosmology and quantum computation where questions of quantum coherence arise, and I emphasize the impact that interactions with the environment can have on quantum coherence.Comment: 25 pages plain LaTeX, no figures. More references have been added and typos have been corrected. Journal of Modern Optics, in press. Imperial/TP/93-94/1

    Selective spin coupling through a single exciton

    Get PDF
    We present a novel scheme for performing a conditional phase gate between two spin qubits in adjacent semiconductor quantum dots through delocalized single exciton states, formed through the inter-dot Foerster interaction. We consider two resonant quantum dots, each containing a single excess conduction band electron whose spin embodies the qubit. We demonstrate that both the two-qubit gate, and arbitrary single-qubit rotations, may be realized to a high fidelity with current semiconductor and laser technology.Comment: 5 pages, 3 figures; published version, equation formatting improved, references adde

    Entanglement of superconducting charge qubits by homodyne measurement

    Full text link
    We present a scheme by which projective homodyne measurement of a microwave resonator can be used to generate entanglement between two superconducting charge qubits coupled to this resonator. The non-interacting qubits are initialised in a product of their ground states, the resonator is initialised in a coherent field state, and the state of the system is allowed to evolve under a rotating wave Hamiltonian. Making a homodyne measurement on the resonator at a given time projects the qubits into an state of the form (|gg> + exp(-i phi)|ee>)/sqrt(2). This protocol can produce states with a fidelity as high as required, with a probability approaching 0.5. Although the system described is one that can be used to display revival in the qubit oscillations, we show that the entanglement procedure works at much shorter timescales.Comment: 17 pages, 7 figure
    • …
    corecore