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We show that by engineering the interaction with the environment, there exists a large
class of systems that can evolve irreversibly to a cat state. To be precise, we show that
it is possible to engineer an irreversible process so that the steady state is close to a
pure Schrödinger’s cat state by using double well systems and an environment comprising
two-photon (or phonon) absorbers. We also show that it should be possible to prolong the
lifetime of a Schrödinger’s cat state exposed to the destructive effects of a conventional
single-photon decohering environment. In addition to our general analysis, we present a
concrete circuit realization of both system and environment that should be fabricatable
with current technologies. Our protocol should make it easier to prepare and maintain
Schrödinger cat states, which would be useful in applications of quantum metrology and
information processing as well as being of interest to those probing the quantum to classical
transition.
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1. INTRODUCTION
The development of many quantum technologies depends on an
ability to engineer strongly non-classical states. Such states take
the form of either highly entangled states of distinct degrees of
freedom or a quantum coherent superposition of macroscopically
distinct states in a single degree of freedom (Sanders, 2012), known
as Schrödinger’s cat states [after a well known thought experiment
(Schrödinger, 1935)]. It is these cat states that we consider in this
paper. There has been great progress in the production of such
states as well as experimentally reconstructing such states through
a series of measurements in a process known as quantum state
tomography (Monroe et al., 1996; Noel and Stroud, 1996; Leibfried
et al., 2005; Ourjoumtsev et al., 2007; Deléglise et al., 2008; Gao
et al., 2010). These developments are of great importance as, in
addition to their curious nature, Schrödinger cat states can be
used as a resource for developing technologies such as quantum
computing (Ralph et al., 2003; Gilchrist et al., 2004), quantum
communication (Jeong et al., 2001; van Enk and Hirota, 2001),
and quantum metrology (Munro et al., 2002; Blatt and Wineland,
2008; Giovannetti et al., 2011). The main obstacle to deploying cat
states in such applications is their fragility as they are destroyed by
noise in a process termed environmental decoherence. A careful
consideration of optical cat states shows that this decoherence may
be interpreted as due to Poisson distributed jumps between even
and odd cat states whenever a single photon is lost (Carmichael,
1993, 2003; Vitali et al., 1997). Their production and maintenance
require very precise quantum control as well as low dissipation.

In this work, we present a possible realization of a pro-
tocol for double well system [in this case a Superconducting

Quantum-Interference Device (SQUID)] to create Schrödinger
cat states using the interaction of the system with a special kind
of environment. To be specific, we engineer an environment com-
prising a bath of two-photon absorbers, for certain initial states,
such that the system relaxes to a steady state, which is close to
a pure Schrödinger cat state. The use of open systems as well as
the measurement process was proposed by Yurke, Schleich, and
Walls (Yurke and Stoler, 1986; Yurke et al., 1990). Gilles, Garraway,
and Knight also proposed that it would be possible to engineer
an environment of this kind that when paired with a parametric
photon pump would exhibit many interesting effects in quantum
optical systems, from the generation of Schrödinger cat states to
manifestly quantum statistics (McNeil and Walls, 1974; Simaan
and Loudon, 1978; Loudon and Knight, 1987; Gilles and Knight,
1993a,b; Gilles et al., 1994a,b; Guerra et al., 1997) (see also Tor-
nau and Bach, 1974; Simaan and Loudon, 1975; Hildred and Hall,
1978; Agarwal and Hildred, 1986; Gerry, 1993; Gerry and Hach,
1993; Hach and Gerry, 1994). Two-photon absorption has also
been suggested as a powerful resource for application in quantum
computing (Franson et al., 2004). We note that there already exist
schemes for realizing non-classical states via engineered dissipa-
tive channels (Amico et al., 2008; Diehl et al., 2008; Kraus et al.,
2008; Schirmer and Wang, 2010; Ticozzi et al., 2010; Zhang et al.,
2010; Busch et al., 2011; Pechen, 2011; Scully et al., 2011; Chen
et al., 2012; Ticozzi and Viola, 2012; Yamamoto, 2012; Ikeda and
Yamamoto, 2013) as well as a number of experimental realiza-
tions (Barreiro et al., 2011; Krauter et al., 2011; Leghtas et al.,
2013). We also note that SQUIDs are an ideal candidate system
for realizing this protocol as they have already been shown able
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Everitt et al. Cool for cats

to support appropriate quantum states (Nakamura et al., 1999;
Friedman et al., 2000; Grajcar et al., 2004; Il’Ichev et al., 2004)
and, as we shall later show, existing circuit designs can be used to
engineer an environment with the suitable characteristics (Deng
et al., 2010; Kumar and DiVincenzo, 2010).

We note that our scheme is simpler than and different from
other driven dissipative bistable systems [for example, the coher-
ently driven optical cavity containing a Kerr medium (Walls
and Milburn, 2008), the driven Duffing mechanical resonator
(Babourina-Brooks et al., 2008), tapered optical fibers (Hendrick-
son et al., 2010), and photon pumps (Gilles and Knight, 1993a;
Gilles et al., 1994a)], as we do not include driving on either the
cavity resonance or the coordinate degree of freedom. The pos-
sibility of engineering dissipative channels, such as the one that
we present in this work, opens up new opportunities for explor-
ing quantum phenomena from the micro to macroscopic level
and in fields as diverse as quantum optics (Haycock et al., 2000),
Bose–Einstein condensates (Andrews, 1997), quantum electron-
ics (Friedman et al., 2000), and nano-mechanics (Badzey and
Mohanty, 2005) [for which multi-phonon relaxation has already
been proposed (Voje et al., 2013a,b)] or any other system in which
it is possible to generate a double well potential.

2. MODEL SYSTEM: THE SQUID RING
For the results presented in this paper, we have used as an example
system a superconducting quantum-interference device (SQUID)
ring. Our reason for choosing SQUIDs is that these devices are
routinely fabricated and their theory is very well understood. We
note that we have investigated a number of other systems (but do
not include results here) and our analysis indicates that the key
feature of the ring is that it can be made to form a double well
potential. Moreover, non-linear systems derived from the Joseph-
son junction in circuit QED exhibit multi photon resonance when
driven by an external field (Deppe et al., 2008) and thus we expect
two-photon decay to be present in such systems. The real difficulty
is making it dominate over single photon effects. We will return
to this in Section 4 where we propose a concrete circuit realiza-
tion of a suitable and realistic environment for a SQUID. Beyond
these considerations, we believe that there is nothing particularly
special about the exact form of the potential needed to realize our
protocol. The potential energy of the SQUID comprising a thick
superconducting ring enclosing a Josephson junction weak link
takes the form of a harmonic oscillator perturbed by a cosine

U (8x ) =
(8−8x )

2

23
−

~Ic

2e
cos

(
2π

8

80

)
where the coordinate 8 is the total magnetic flux in the ring
and 80= h/2e is the superconducting flux quantum. We have
chosen example circuit parameters that are in-line with modern
fabrication techniques and suited to experimental realizations:
3= 3× 10−10 H for the ring’s inductance and Ic= 2µA as the
critical current of the weak link (although not in the above for-
mula, we also chose a capacitance C= 5× 10−15 F). We set the
externally applied magnetic flux 8x= 0.580, so that the ring’s
potential forms a degenerate double well. It is also convenient to

introduce the bosonic annihilation a, and creation a
†

operators

FIGURE 1 | Stationary state energy levels: the potential energy of the
ring (black) as well as the energy of the ring’s stationary states (blue).
Parameters used here and throughout the paper are inductance
3=3×10−10 H, capacitance C=5×10−15 F, critical current of the weak link
Ic =2µA, and externally applied magnetic flux 8x =0.580. Note that, we
have exaggerated the energy difference between the ground and first
excited states as well as stationary states two and three in order to make
the different energies visible on this plot.

where8 =
√

~
2CωLC

(a+ a†) and ωLC = 1/
√
3C . In Figure 1, we

show the potential energy of the ring as well as the energy of the
ring’s stationary states. It is worth noting that the ground state and
first excited state approximate, respectively, symmetric and anti-
symmetric superpositions of two coherent states centered at the
bottom of each well. These two states have very nearly the same
energy and the difference in their energy has been exaggerated in
this plot (as have those for the second and third excited states).

3. THE EFFECT OF IDEAL ENVIRONMENTS
3.1. BACKGROUND
We model the effect of the environment on the system using the
master equation in the Lindblad form (Viola et al., 1997)

dρ

dt
= −

i

~
[H , ρ]+

1

2

∑
j

{[
Lj , ρL†

j

]
+

[
Ljρ, L†

j

]}

where ρ is the density matrix describing the state of the system
(initially ρ= |ψ(t= 0)〉〈ψ(t= 0)|) and H is the system’s Hamil-
tonian. The non-unitary effect of the environment on the system
is contained in the Lindblad operators Lj with each describing a
possible environment. For example, the usual Ohmic (i.e., anal-
ogous to friction proportional to velocity) or lossy bath, at zero
temperature, would be described by a Lindblad operator propor-
tional to the annihilation operator. For an undriven system, the
master equation has steady state solution that, in the presence of
an environment, is usually a density operator in a mixed state. In
certain circumstances, at zero temperature, these solutions may
be pure states such as the vacuum state of the harmonic oscilla-
tor. In general, the steady state solutions will not exhibit features
such as superpositions of macroscopically distinct states and are
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Everitt et al. Cool for cats

relatively uninteresting. It is precisely this process where the envi-
ronment essentially removes the system’s quantum coherence from
de-localized, or more generally non-Gaussian states, that is known
as environmental decoherence. The density matrix for a decohered
system without these quantum correlations represents a statistical
mixture of possible states of the system and, for a single quantum
object, can be directly compared with classical probability density
distributions (Habib et al., 1998). It should be noted, however,
that there are driven dissipative systems, for example, dispersive
bistability, for which the steady state is a mixed state with a con-
siderable amount of quantum coherence in the limit of large Kerr
non-linearity (Wolinsky and Carmichael, 1988; Carmichael, 1993,
2003).

We find very different behavior if one chooses a different
environment comprising two-photon absorbers, described by a
Lindblad operator proportional to the square of the annihilation
operator. In Figure 2, we show the energy expectation values and
von-Neumann entropy, S=−Tr[ρlnρ] as functions of time for
solutions of the master equation for the ring in the presence of
such an environment. We used as initial conditions the first twenty
energy eigenstates of the ring Hamiltonian. In these plots, the
energy behaves just as one would expect the energy of an undriven
open quantum system to do – it settles to a single value. When one
inspects the dynamics of the entropy, however, the story is quite
different. One usually expects the entropy to grow from zero to
some asymptotic value as the system evolves into a mixed state.
While we see that this is the initial behavior, the entropy does not
monotonically increase; instead it decreases until the entropy is
nearly negligible. It appears that the system has to a significant
extent recohered and the final density matrix is very nearly that
of a pure state. While this is not the usual behavior of an open
quantum system, based on previous work such as Yurke and Stoler
(1986), Yurke et al. (1990), Gilles and Knight (1993a), and Gilles
et al. (1994a), it is in-line with our expectations of an environment
that“decoheres”a system to an almost pure state that is a very good
approximation to a Schrödinger cat state.

3.2. PHASE SPACE METHOD: THE WIGNER FUNCTION
In order to demonstrate that the system does indeed decay to a
Schrödinger cat state, we will make use of the Wigner function.
These pseudo probability density functions in phase space have
been of great utility in demonstrating that some quantum states
are Schrödinger cats (Deléglise et al., 2008). The Wigner function is

W (8, Q) =
1

2π~

∫
〈8+ ζ |ρ|8− ζ 〉 exp

(
−

2iQζ

~

)
dζ

where Q is the charge variable that is conjugate to the magnetic flux
8. In Figure 3, we show three Wigner functions. Figure 3A shows
the initial state and is a coherent state centered at the origin. This is
clearly recognizable as the expected Gaussian bell shape associated
with coherent states. We have solved the master equation for the
ring in a lossy bath, with a Lindblad of L =

√
0.2a and allowed

the system to reach its steady state to obtain Figure 3B. This is the
Wigner function of a statistical mixture of two macroscopically
distinct states and is in-line with expectations of the effect of a
decohering environment on such a device (Everitt et al., 2004). In

FIGURE 2 | Effect of decoherence on energy and entropy. We show the
dynamical evolution of the ring’s energy and entropy using each of its first
twenty stationary states as initial conditions. The dynamics have been
found by solving the master equation for the ring in the presence of a bath
of two-photon absorbers (with L =

√
0.2a2). We have provided insets for

increased resolution of the system’s initial dynamics. The top plot shows
the dynamics of the ring’s total energy. As expected for an open quantum
system of this kind, the ring can be seen to decohere to one energy, a little
above that of the ground state. The bottom plot shows the dynamics of the
von-Neuman entropy for the ring. In each case, the initial entropy is zero as
the system starts in a pure state. The entropy grows before dropping off to
a low value indicating that the system’s steady state solution is very nearly
a pure state.

Figure 3C, we show the Wigner function that we obtain by solving
the master equation, as for (Figure 3B), but replacing the damping
term with a bath of two-photon absorbers, with L =

√
0.2a2. We

notice two things: firstly, the state has rotated, which we believe to
be a consequence of a squeezing action associated with the bath
and secondly that there are interference terms between the distinct
states of the system. These interference terms, indicating quantum
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Everitt et al. Cool for cats

FIGURE 3 | Cooling for a cat. In this figure we show, by making use of
Wigner functions, the effect of two different environments on a ring
prepared in a coherent state biased at zero flux. Each graph contains a top
down view with a three dimensional plot of the function as a not to fixed
scale inset. The graphs show (A), the initial state, which takes the form of
a Gaussian bell. (B) The steady state solution to the master equation under
the influence of a conventional decohering environment comprising a
lossy bath (with a Lindblad proportional to the annihilation operator
L =
√

0.2a). The ring has decohered to two distinct macroscopic states

and we do not see the interference terms between them that are
characteristic of a Schrödinger cat state. We have instead a statistical
mixture, the usual and expected result (Everitt et al., 2004). (C) The steady
state solution to the master equation for the ring coupled to a bath of
two-photon absorbers (with a Lindblad proportional to the square of
annihilation operator, L =

√
0.2a2). In this case, the ring has decohered to

a superposition of two macroscopic states but now there are interference
terms between these states indicating quantum coherence – the
signature of a Schrödinger cat state.

coherence, confirm that this state is indeed a very good approxima-
tion to a Schrödinger cat. We note that two-photon decay preserves
parity, which can be easily seen if we consider the representation
of the systems state vector in the harmonic oscillator basis. Here,
we see that a2 will only couple even states to even states and odd
states to odd states. Thus, the action of a2 on any initial state
must preserve its parity. Hence, an environment comprising only
two-photon absorbers would ensure that the system will relax to
a steady state with same parity as the initial state. It is this sym-
metry property of the environment together with the symmetry
in the Hamiltonian and initial condition that leads to steady state
solutions that are Schrödinger cat states.

3.3. QUANTIFYING NON-LOCAL CORRELATIONS
In order to examine quantitatively the emergence of this cat from
the initial coherent state we introduce, following (Nogues et al.,
2000; Białynicki-Birula et al., 2002), a measure of how de-localized
the system is in phase space that is the integral of negative parts of
the Wigner function

N (ρ) =
1

2

∫
{|W (8, Q)| −W (8, Q)} d8dQ.

In absolute terms, this is a useful measure, but when we
know (by inspecting the Wigner function) that the states we are
examining are cat-like, a more useful measure may well be a relative
cattiness to some reference Schrödinger cat state.

Hence, we define:

Cat (ρ, ρref ) =
N (ρ)

N (ρref )
(1)

which quantifies the ratio of the de-localization of one cat
state against a reference cat and enables us to quantify if one
is more [Cat(ρ, ρref)> 1], less [Cat(ρ, ρref)< 1], or just as
[Cat(ρ, ρref)= 1] catty than the other. We have chosen to intro-
duce this measure over using existing metrics such as the fidelity as
it does not contain any contributions of the type that occur from,
for example, correlations between a cat and its related mixed state
(which might be thought of as the overlap of the “classical” like
parts of the state). Computing relative measures such as the fidelity
is further complicated by the fact that the final states, in terms of
the size and orientation, for the different environments are very
different from each other (having very little overlap). Hence, per-
forming meaningful estimates of fidelity would be quite difficult,
perhaps even impossible as we would have to provide different
reference states for each environment against which to measure
the fidelity. We note that while there are some limitations with the
Cat measure and it should be applied with care, for the problem
we study here, it suits our purposes very well. In Figure 4, we show
the dynamics of this quantity for comparison with the results pre-
sented in Figure 3 using as a reference state ρref the final cat state
shown in Figure 3C. Here, we can clearly see that the cattiness
of the system subject to an environment of two-photon absorbers
monotonically increases and asymptotically converges to a steady
state.

3.4. RESULTS
It is interesting to consider what would happen to a ring that was
initially in a Schrödinger cat state under the influence of a bath
of two-photon absorbers. For systems with deep enough dou-
ble well potentials, such as the one considered here the ground
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Everitt et al. Cool for cats

FIGURE 4 | Relative cattiness is shown. We show the cattiness measure
Cat(ρ, ρ ref) for the dynamics leading to Figure 3B in red and to Figure 3C in
green. Here, we have used as a reference state ρ ref the final cat state
shown in Figure 3C. For reference, later we have also included the
dynamics of Cat(ρ, ρ ref) for an environment of two-photon absorbers and
damping.

and first excited energy eigenstates are both Schrödinger cats. The
ground state is, to good approximation, an even superposition of
two macroscopically distinct coherent states while the first excited
state is an odd superposition as can be seen from their Wigner
functions in Figures 5A,C, respectively. The even and odd nature
of these superpositions is reflected in the Wigner function by the
phase of the interference terms between the two Gaussians of the
cat. It is known that such states would decohere under the environ-
ment of a lossy bath to a statistical mixture (Everitt et al., 2004). The
dynamics of the system coupled to an environment comprising a
bath of two-photon absorbers are, once more, found by solving the
master equation with an L =

√
0.2a2, until an approximate steady

state is reached. The Wigner function of these states is then shown
with Figure 5A evolving to Figures 5B–D and Figures 5C,D. We
observe that the phase in the final cat reflects that of the initial cat
and the system has not simply decohered to the same steady state.
The environment thus seems to preserve some of the symmetry of
the initial state. We have checked the first twenty stationary states
all of which decay to one of these cats or the other. Moreover, the
pattern that was observed from the ground and first excited state
persists and all even and odd states seem to evolve to cats of the

FIGURE 5 | Preserving a cat, here we look at the ring initially in either
its ground or first excited stationary state. As can be seen from their
Wigner functions, plots (A,C), respectively, these take the form of
Schrödinger cat states. The ground state is, to good approximation, an
even superposition of two macroscopically distinct coherent states while
the first excited state is an odd superposition. In terms of the Wigner

functions, this is reflected in the phase of the interference terms between
the two Gaussians of the cat. The effect of evolving the system in the
presence of a bath of two-photon absorbers (L =

√
0.2a2) is then shown

with (A,B) evolving to (C,D). We observe that the phase in the final cat
reflects that of the initial cat and the system has not simply decohered to
the same steady state.

www.frontiersin.org October 2014 | Volume 1 | Article 1 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Quantum_Computing/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Everitt et al. Cool for cats

same form as those shown in Figures 5B,D that are out of phase
with each other.

This approach seems all very well and good, but an environ-
ment of two-photon absorbers is very special. It would be hard to
construct such an environment without having any other source
of decoherence present. We therefore need to verify that the effects
of a two-photon absorbing environment cannot be completely
destroyed by the presence of a more traditional environment such
as a lossy bath. In Figure 6, we show the results of just such a check.
For each plot, the system’s initial state was the ring’s ground state
as shown in Figure 5A. In Figure 6A, we show the effect of a lossy
bath. We solve the master equation with a Lindblad L =

√
0.02a

and allow the system to evolve until it has just decohered to a
statistical mixture and we have plotted the Wigner function at this
point in time. We use this run as a benchmark for computing the
next two cases, which show the Wigner function solutions of the
master equation computed over the same interval. In Figure 6B, we
show the effect of a two-photon absorbing bath once more “deco-
hering”to a Schrödinger cat state (L =

√
0.2a2). And in Figure 6C,

we apply both the lossy bath of in Figure 6A and a two-photon
absorbing environment of in Figure 6B to the ring (L1 =

√
0.02a

and L2 =
√

0.2a2). We see that in this figure, there remain resid-
ual Schrödinger cat state features in the Wigner function. Hence,
it seems that not only does a bath of two-photon absorbers create
Schrödinger cat states but also enables Schrödinger cat states to
be more resilient to other forms of decoherence. In other words,
the presence of an environment of two-photon absorbers seems
to be prolonging the life of a damped cat. In Figure 6D, we quan-
tify the cattiness using Cat(ρ, ρref) using the initial stationary
state as shown in Figure 5A as the reference cat. For the three
environments considered here, we find that for the system’s later
evolution the environment of two-photon absorbers does indeed
prolong the lifetime of the initial cat even in the presence of a lossy
bath. We note that we obtain an almost identical set of results if we
start the system off in a coherent state centered at the origin (as in
Figure 3A). We chose to use the ring’s ground state as, in our view,
we obtained a more instructive plot of the states cattiness from
the systems dynamics. For a direct comparison of the dynamics

FIGURE 6 | A stubborn cat: combatting the effect of other forms of
decoherence. For each plot, the system was initialized in the ground state of
the ring as in Figure 5A. In these plots, we show (A), the effect of a lossy
bath on the state producing a typical plot of a cat that has just decohered to a
statistical mixture – setting the time that we use to sample the other two
plots of this figure (L =

√
0.02a). (B) The effect of a two-photon absorbing

bath showing decoherence to a Schrödinger cat state (L =
√

0.2a2) (C), the
effect of both a lossy bath and a two-photon absorbing bath on the state.

Notice that, there are still signatures of a cat state unlike for the lossy bath
alone – the environment of two-photon absorbers seems to be prolonging the
life of the cat (L1 =

√
0.02a and L2 =

√
0.2a2) and (D), we show the cattiness

Cat(ρ, ρ ref) for these three environments as a function of time (we have used
the initial stationary state as shown in Figure 5A as the reference cat in this
case). We see for the system’s later evolution the environment of two-photon
absorbers does indeed prolong the lifetime of the initial cat even in the
presence of a lossy bath.
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of Cat(ρ, ρref) for these two initial conditions, we now note that
the dashed line shown in Figure 4 was found for a lossy bath
and a two-photon absorbing environment with L1 =

√
0.02a and

L2 =
√

0.2a2. The green and blue lines of Figures 4 and 6D are
directly comparable. The idea that the presence of a two-photon
absorbing environment can be used to extend the lifetime (and
also generate) Schrödinger cat states that holds equally well for
two very different initial conditions.

4. A REALISTIC MODEL OF AN ENVIRONMENT
4.1. OVERVIEW
In order to make our above discussion a reality, we need to engineer
a dissipative quantum channel that acts as a two-photon absorber.
Here, we suggest a concrete realization that, whilst not perfect, still
retains the key feature of environmentally induced “decoherence”
to a Schrödinger cat state. Our proposal makes use of non-linearly
coupled electromagnetic fields and SQUIDs. Such quantum elec-
trodynamic circuits have already been investigated in the context of
weak non-demolition measurement (Deng et al., 2010; Kumar and
DiVincenzo, 2010). One example comprises two microwave super-
conducting resonators coupled via a SQUID, which in addition to
a cross Kerr effect also manifests two-photon conversion terms if
the cavities are resonant (Kumar and DiVincenzo, 2010). Such sys-
tems can be quantized (Everitt et al., 2001a,b; Stiffell et al., 2005;
Wallquist et al., 2006) and with a suitable arrangement and choice
of circuit parameters can be reduced (Wielinga and Milburn, 1993;
Santamore et al., 2004) to the form of a double well system sub-
ject to a two-photon absorbing environment (see Section 4 for
details). Unavoidably, this process also brings with it an additional
dephasing term, that adds to the master equation another Lind-

blad operator proportional to a
†
a. Nevertheless, we can report

that while the dephasing term smears out the Gaussian peaks in
the cat the interference terms in the Wigner function represent-
ing quantum coherence between the cat states remain strong. The
fact that this dephasing term preserves parity is once more the key
factor in ensuring the steady state of our engineered dissipative
channel is still a Schrödinger cat state. Our proposal could lead to
an initial realization of a two-photon absorbing environment and
concomitant interesting effects. The engineering of improved dis-
sipative channels, without additional and unwanted decoherence
effects, remains an open and interesting problem.

4.2. THE MODEL: DERIVATION OF THE MASTER EQUATION
There are a number of models (Deng et al., 2010; Kumar and
DiVincenzo, 2010) whereby two microwave superconducting cav-
ities can be non-linearly coupled using SQUIDs. We will base our
discussion on Kumar and DiVincenzo (2010). In that model, the
Hamiltonian describing two microwave cavities, a probe (p) cavity
and a signal (s) cavity, coupled with a SQUID is

H = ECpn2
p + ELpφ

2
p + ECsn2

s + ELsφ
2
s + A

[
E4

Lpφ
4
pcos4β

+E4
Lsφ

4
s sin4β + 6E2

LpE2
Lsφ

2
pφ

2
s cos2βsin2β

]
(2)

where nα , φα are the standard charge and phase conjugate vari-
ables describing the collective electrical degree of freedom in each
cavity and A = 16π2L1/8

4
0 with L1 defined as the coefficient of

the leading non-linear current term of the SQUID inductance. We
will set cos2 β = sin2 β = 1/2.

The system can be quantized in the usual way in terms of the

bosonic annihilation and creation operators b, b
†

for the probe

and a, a
†

and for the signal cavity defined by (Wallquist et al.,
2006)

φp →

(
ECp

4ELp

)1/4 (
b + b†) (3)

np →−i

(
ELp

4ECp

)1/4 (
b − b†) (4)

φs →

(
ECs

4ELs

)1/4 (
a + a†) (5)

ns →−i

(
ELs

4ECs

)1/4 (
a − a†) (6)

The Hamiltonian may then be written as

H = ~ωpb†b + ~ωsa†a + ~χbb† 2b2
+ ~χaa† 2a2

+ ~
√
χaχb

(
b2a† 2

+ b† 2a2
+ 4a†ab†b

)
(7)

Unlike Kumar and DiVincenzo (2010), we have not neglected

the terms like b2a
†2 as we will choose ωp=ωs so that these terms

are resonant1.
We now include the dissipative channels for this model in

the usual way. The density operator for the total system, in the
interaction picture, satisfies

dρ

dt
= −i [HI , ρ]+ κaD [a] ρ + κbD [b] ρ (8)

where D [L] ρ = LρL†
−

1
2

(
L†Lρ + ρL†L

)
and

HI = ~χbb† 2b2
+ ~χaa† 2a2

+ ~(ε∗b + εb†)

+ ~
√
χaχb

(
b2a† 2

+ b† 2a2
+ 4a†ab†b

)
(9)

and κa, κb are the decay rates of the photon number in the signal
and probe cavity, respectively, and we have included a resonant
coherent driving of the probe cavity with ε =

√
κbεb where |εb|2

is the photon flux of the driving field. We have also assumed that
each cavity sees a zero temperature environment.

In the absence of the SQUID mediated interactions, the probe
cavity will relax to a coherent state with the steady state amplitude

β0 =
−2iε

κb
. (10)

1Note that the coefficients in this equation are ~χa =
3A
8 ECs E3

Ls ,~χb =

3A
8 ECpE3

Lp , ~ωs = 2
√

ECs ELs

[
1+ 3A

8 ELs

(√
ECs E3

Ls +

√
ECpE3

Lp

)]
and ~ωp =

2
√

ECpELp

[
1+ 3A

8 ELp

(√
ECs E3

Ls +

√
ECpE3

Lp

)]
.
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Everitt et al. Cool for cats

We will choose the phase of the probe driving as a reference
phase and set β0 to be real. If we make a canonical transformation
to the displaced picture by

b = b̄ + β0 (11)

we can linearize the Hamiltonian, Equation (9), in b̄, b̄† to obtain

HI = Ha + 4~
√
χaχbβ0

(
b̄ + b̄†

)
a†a

+ 2~
√
χaχbβ0

(
b̄†a2
+ b̄a† 2

)
(12)

where the effective Hamiltonian for the signal mode alone is

Ha = ~χaa† 2a2
+ 4~
√
χaχbβ

2
0 a†a + ~

√
χaχbβ

2
0

(
a2
+ a† 2)

(13)
which is equivalent to a parametrically driven Kerr non-linear cav-
ity. This model was considered by Wielinga and Milburn (1993).
It is equivalent to a double well system with a hyperbolic fixed
point at the origin in phase space and two elliptic fixed points
symmetrically displaced from the origin. The second and third
terms in equation (12) can be given a familiar interpretation. The
second term is of the same form as the radiation pressure inter-
action between a mechanical resonator (b̄, b̄†) and a cavity field

(a, a
†
). The last term is equivalent to the quantum description of

sub/second harmonic generation considered by Drummond et al.
(1980).

We now assume that κb, the line width of the probe cavity is
large, κb >> κa ,

√
χaχb and we adiabatically eliminate it from

the dynamics. In that case from the point of view of the signal
mode, the first term in equation (12) looks like a fluctuating cavity
detuning while the last term looks like a two-photon loss term.
This can be verified by explicit adiabatic elimination of the probe
cavity field. We assume that the probe cavity, in the displaced
picture, remains very close to its steady state of zero photons.
The method is described in Santamore et al. (2004). The effective
master equation for the signal cavity is

dρs

dt
= −

i

~
[Ha , ρs]+ 02D

[
a2] ρs + 0⊥D

[
a†a

]
ρs + κaD [a] ρs

(14)
where the two-photon decay rate 02 and dephasing rate 0⊥ are
given by

02 =
16χaχbβ

2
0

κb
and 0⊥ = 02/4 =

4χaχbβ
2
0

κb
. (15)

4.3. RESULTS
A peculiar feature of using SQUID coupled cavities is that the
price paid for two-photon decay is an additional dephasing term
on the signal cavity field. Using the strong dependence on the
steady state amplitude β0 in the two-photon rate, we can make
the two-photon decay term that dominate over the single pho-
ton decay of the signal cavity over the time scales of interest. In
Figure 7A, we show that the dephasing term that is introduced in
the above (un-damped, κa= 0) master equation has little effect

on the Schrödinger cat nature of the steady state solution associ-
ated with the two-photon absorbing bath. In order to consider a
worst case scenario, in Figure 7B, we go on to consider what would
happen if we simultaneously weaken the effect of the two-photon
environment and make the dephasing term even stronger. We have
not taken these values from our model as the ratio of 0⊥ to 02

has not been preserved. Our reason for presenting this data is to
indicate that alternative circuit realizations, where the beneficial
effects of the two-photon absorbing environment are reduced and
the damaging effects of the dephasing term increased, might still
be used to engineer a steady state cat. We therefore believe that

FIGURE 7 | A persistent cat, here we look at the effect of including the
dephasing term in addition to the bath of two-photon absorbers to the
ring initially in its ground state. (A) The steady state solution for the
environment as derived in Section 4.2 and described by master equation,
equations (14) and (15) with 02 =0.2 (or L2 =

√
0.2a2) and 0⊥ =0.05 (or

L⊥ =
√

0.05a†a) and we have set the damping coefficient κa =0. (B) We
show that even for an environment, other than the one considered in (A),
where dephasing dominates over the two-photon absorption process
(L2 =

√
0.02a2 and L⊥ =

√
0.08a†a), it is still possible for the steady state of

the ring to be a cat.
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Everitt et al. Cool for cats

FIGURE 8 | A stubborn cat II: the effect of a realistic environment for
comparison with Figure 6, in this plot we show the cattiness for a:
lossy bath

(
L1 =

√
0.02a

)
; a lossy bath and a two-photon absorbing

bath
(

L1 =
√

0.02a and L2 =
√

0.2a2
)

; and also the full model including

the dephasing term
(

L1 =
√

0.02a, L2 =
√

0.2a2, and L⊥ =
√

0.05a†a
)

. Even

with the dephasing term included the environment of two-photon absorbers
still prolongs the lifetime of the initial cat in the presence of a lossy bath.

the discussion in Section 3 is in-line with the behavior of realistic
environments.

Finally, in Figure 8 we show the cattiness [see equation (1)]
of the realistic environment with two of the cases considered
in Figure 6. Specifically, we consider the cases of a lossy bath
(L1 =

√
0.02a); a lossy bath and a two-photon absorbing

(L1 =
√

0.02a and L2 =
√

0.2a2) and also the full model,
of equation (14), including the dephasing term (L1 =

√
0.02a,

L2 =
√

0.2a2, and L⊥ =
√

0.05a†a). Even with the dephas-
ing term included the environment of two-photon absorbers
still prolongs the lifetime of the initial cat in the presence of a
lossy bath.

5. CONCLUSION
There are two phenomena that embody quantum mechanics,
namely entanglement and the Schrödinger’s cat thought exper-
iment for making macroscopic superposition states (Schrödinger,
1935). The latter was proposed to highlight the difficulties that
we have connecting quantum mechanics with everyday experi-
ence, as it neatly demonstrates the problems of understanding the
emergence of the classical world from quantum theory and the
measurement of quantum systems. Schrödinger’s cat has become
the icon of the subject and evolved to have a well defined mean-
ing. It is an accepted explanation within the popular literature
that the reason the original thought experiment does not trans-
late into reality (if conducted with a real cat in a box, etc.) is
that the coupling of the environment to the radiation source
(which included the cat itself) makes it impossible to observe the
coherence between the two superposed macroscopically distinct
states – a process known as decoherence. As such, environmental
decoherence is something that many deem to be a crucial element
in the quantum to classical transition (Bell, 1990; Habib et al.,
1998; Schlosshauer, 2005; Everitt, 2009; Everitt et al., 2009). We

have presented an example of an engineered environment that
may be used to produce Schrödinger cat states as a steady state. It
may well be that system and environment such as the one we have
used here could play an interesting role in quantum mechanically
enhanced metrology probing foundational aspects of quantum
mechanics associated with realizing macroscopic quantum phe-
nomena and the quantum to classical transition. In addition, the
two-photon decay channel, if monitored appropriately, enables a
measurement of the intensity squared of the number and may
also enable novel non-linear feedback protocols. Although it is
beyond the scope of the current paper, we conjecture that it may
soon be possible, following (Yurke et al., 1990), to make use of
an environment to create a conditional Schrödinger cat state by
measurement.
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