3 research outputs found

    Dissecting social interaction:Dual-fMRI reveals patterns of interpersonal brain-behavior relationships that dissociate among dimensions of social exchange

    Get PDF
    During social interactions, each individual’s actions are simultaneously a consequence of and an antecedent to their interaction partner’s behavior. Capturing online the brain processes underlying such mutual dependency requires simultaneous measurements of all interactants’ brains during real-world exchange (‘hyperscanning’). This demands a precise characterization of the type of interaction under investigation, however, and analytical techniques capable of capturing interpersonal dependencies. We adapted an interactive task capable of dissociating between two dimensions of interdependent social exchange: goal structure (cooperation vs competition) and interaction structure [concurrent (CN) vs turn-based]. Performing dual-functional magnetic resonance imaging hyperscanning on pairs of individuals interacting on this task, and modeling brain responses in both interactants as systematic reactions to their partner’s behavior, we investigated interpersonal brain-behavior dependencies (iBBDs) during each dimension. This revealed patterns of iBBDs that differentiated among exchanges; in players supporting the actions of another, greater brain responses to the co-player’s actions were expressed in regions implicated in social cognition, such as the medial prefrontal cortex, precuneus and temporal cortices. Stronger iBBD during CN competitive exchanges was observed in brain systems involved in movement planning and updating, however, such as the supplementary motor area. This demonstrates the potential for hyperscanning to elucidate neural processes underlying different forms of social exchange

    Getting into sync:Data-driven analyses reveal patterns of neural coupling that distinguish among different social exchanges

    Get PDF
    In social interactions, each individual's brain drives an action that, in turn, elicits systematic neural responses in their partner that drive a reaction. Consequently, the brain responses of both interactants become temporally contingent upon one another through the actions they generate, and different interaction dynamics will be underpinned by distinct forms of between-brain coupling. In this study, we investigated this by “performing functional magnetic resonance imaging on two individuals simultaneously (dual-fMRI) while they competed or cooperated with one another in a turn-based or concurrent fashion.” To assess whether distinct patterns of neural coupling were associated with these different interactions, we combined two data-driven, model-free analytical techniques: group-independent component analysis and inter-subject correlation. This revealed four distinct patterns of brain responses that were temporally aligned between interactants: one emerged during co-operative exchanges and encompassed brain regions involved in social cognitive processing, such as the temporo-parietal cortex. The other three were associated with competitive exchanges and comprised brain systems implicated in visuo-motor processing and social decision-making, including the cerebellum and anterior cingulate cortex. Interestingly, neural coupling was significantly stronger in concurrent relative to turn-based exchanges. These results demonstrate the utility of data-driven approaches applied to “dual-fMRI” data in elucidating the interpersonal neural processes that give rise to the two-in-one dynamic characterizing social interaction

    You ≠ Me: Individual differences in the structure of social cognition

    Get PDF
    This study investigated the structure of social cognition, and how it is influenced by personality; specifically, how various socio-cognitive capabilities, and the pattern of inter-relationships and co-dependencies among them differ between divergent personality styles. To measure social cognition, a large non-clinical sample (n = 290) undertook an extensive battery of self-report and performance-based measures of visual perspective taking, imitative tendencies, affective empathy, interoceptive accuracy, emotion regulation, and state affectivity. These same individuals then completed the Personality Styles and Disorders Inventory. Latent Profile Analysis revealed two dissociable personality profiles that exhibited contrasting cognitive and affective dispositions, and multivariate analyses indicated further that these profiles differed on measures of social cognition; individuals characterised by a flexible and adaptive personality profile expressed higher action orientation (emotion regulation) compared to those showing more inflexible tendencies, along with better visual perspective taking, superior interoceptive accuracy, less imitative tendencies, and lower personal distress and negativity. These characteristics point towards more efficient self-other distinction, and to higher cognitive control more generally. Moreover, low-level cognitive mechanisms served to mediate other higher level socio-emotional capabilities. Together, these findings elucidate the cognitive and affective underpinnings of individual differences in social behaviour, providing a data-driven model that should guide future research in this area
    corecore