639 research outputs found

    Holocene episodes of warm conditions in the eastern Fram Strait - a multiproxy perspective on the variability of Atlantic Water inflow

    Get PDF
    EGU2011-2455 The current interglacial has gone through a variety of warmer and colder periods. Consistent with the decreasing solar insolation during the Holocene, warmest conditions have occurred particularly within its earliest phase. We studied high-resolution sediment sequences from the Western Svalbard margin covering the last ca 10,000 years in order to reconstruct the variations of Atlantic Water advection to the Arctic, the sea ice extent, and the structure of the water column on the Westspitsbergen continental margin. The Fram Strait, often referred to as the Arctic Gateway, is the only deep-water passage for Atlantic-derived water masses to enter the Arctic Ocean. Northward advection of relatively warm and saline Atlantic Water masses keeps the eastern part of the Fram Strait ice-free all year. It therefore plays a crucial role for the heat budget of the Arctic. A multiproxy data set including geochemical, micropaleontological, and sedimentological parameters was established with centennial to multidecadal time resolution. Records of foraminiferal oxygen and carbon isotopes, planktic foraminifer assemblages, and the amount of ice rafted debris clearly reveal distinct variations between climatically warmer and colder intervals throughout this period. Planktic foraminifer assemblages reveal warmest conditions for the early Holocene period (ca 10-8 ka). A second warming pulse is detected between 5 and 6 ka. In the second half of the Holocene, increased IRD contents are indicative of a significant cooling trend. Despite of the decreasing solar insolation planktic foraminiferal assemblages suggest a return of slightly strengthened Atlantic Water advection around 3 to 2 ka and a strong warming event in the present, anthropogenically influenced period

    Case Studies of the Role of Arctic Gateways in Plio-Pleistocene Arctic Changes

    Get PDF
    The configuration of the Arctic Ocean as a mediterranean sea, surrounded by continents, gives a particular importance to the few connections that exist to the world ocean. In this manuscript critical cases are examined when the Arctic Ocean played an important role in climatic changes occurring over long and short geological timescales. By presenting three examples of published research results it is shown that in particular the water mass exchange through Bering Strait and the Fram Strait has varied in direction and volume. These variations have caused significant changes in the environments in the Arctic Ocean itself, on the surrounding continents, and – in cases – even hemisphere-wide. Owing to the prominent role of the Arctic Ocean in the global ocean circulation system, studies of the role of Arctic gateways are key to a better understanding of past, present, and future changes

    Neoglacial cooling culminates in rapid sea ice oscillations in eastern Fram Strait

    Get PDF
    EGU2011-407 The spatial and temporal distribution of sea ice in the subpolar North Atlantic is mainly controlled by the advection of warm Atlantic Water via the Norwegian and West Spitsbergen Current in eastern Fram Strait. Simultaneously, polar water and sea ice from the Arctic Ocean is transported southward by the East Greenland Current. Hence, variations in the strength of this oceanic circulation regime may either stimulate or reduce the sea ice extent. Based on organic geochemical studies of a high-resolution sediment core from eastern Fram Strait we provide new evidence for the highly variable character of the sea ice conditions in this area. The combination of the sea ice proxy IP25 (Belt et al., 2007) with phytoplankton derived biomarkers (e.g. brassicasterol, dinosterol; Volkman 2006) enables a reliable reconstruction of sea surface and sea ice conditions, respectively (Müller et al., 2009; 2010). By means of these biomarkers, we trace gradually increasing sea ice occurrences from the Mid to the Late Holocene – consistent with the neoglacial cooling trend. Throughout the past ca. 3,000 years (BP) we observe a significant short-term variability in the biomarker records, which points to rapid advances and retreats of the sea ice cover at the continental margin of West Spitsbergen. The co-occurrence of IP25 and phytoplankton markers, however, suggests that the primary productivity benefits from these sea ice surges. As such, higher amounts of open-water phytoplankton biomarkers together with peak abundances of IP25 indicate recurring periods of enhanced ice-edge phytoplankton blooms at the core site. To what extent a seesawing of temperate Atlantic Water may account for these sea ice fluctuations requires further investigation. Concurrent variations in Siberian river discharge (Stein et al., 2004) or Norwegian glacier extents (Nesje et al., 2001), however, strengthen that these fluctuations may be assigned to variations in the North Atlantic/Arctic Oscillation (NAO/AO) and (hence) a weakened/accelerated Atlantic Water input and Arctic sea ice export

    Stepwise transition from deglacial/Early Holocene to modern-like conditions in the eastern Fram Strait, sub-Arctic north, inferred from planktic foraminifer fauna and sea surface temperatures

    Get PDF
    EGU2012-4750 The heat content of the Arctic Ocean is mainly controlled by the inflow of north-heading warm and saline Atlantic Water through eastern Fram Strait. The eastern Fram Strait is therefore ice-free all year, opposite to its perennially ice-covered western part where large amounts of Arctic sea ice are exported year-round to the Nordic Seas. The Early and Mid-Holocene phases (ca 12 to 5 cal ka BP) in the (sub-)Arctic have been especially marked not only by high summer insolation but also by rising sea level and the final disintegration of large ice sheets that had been established during the preceding glacial phase. Two sediment cores with multidecadal resolution from the Western Svalbard margin have been investigated for its planktic foraminiferal distribution, sea surface temperatures, planktic and benthic stable isotope ratios, and lithological parameters to derive information on the Holocene variability of the heat transport to the Arctic Ocean and related fluctuations of the marginal ice zone in the eastern Fram Strait. Planktic foraminifer fauna and a summer sea surface temperature reconstruction based on the modern analogue technique imply a stepwise transition from deglacial/Early Holocene to modern-like conditions in the eastern Fram Strait. Repeated short-term advances of the sea ice margin accompanied the generally strong heat transport to the Arctic Ocean during the Early to Mid-Holocene. Consistent with the decreasing solar insolation, cooler (sub-)surface conditions established after ca 5 cal ka BP most likely related to both a weakening of the Atlantic Water inflow and strong export of Arctic sea ice through Fram Strait. The Late Holocene Neoglacial phase was characterized by high contents of ice-rafted material and dominance of the cold water-indicating planktic foraminifer species Neogloboquadrina pachyderma. Cool Late Holocene conditions are reversed by a strong warming event likely caused by a significant strengthening of Atlantic heat advection to the Arctic during the present, anthropogenically influenced period

    Die POLARSTERN-Expedition ARK IX/4: Geowissenschaftliche Arbeiten am nördlichen eurasischen Kontinentalrand

    Get PDF
    Fahrtbericht der GEOMAR-Expeditionsteilnehmer. Fahrtroute (5.8. - 5.10.1993): Tromsoe - Murmansk - Svalbard - Franz-Josef-Land - Karasee - Laptevsee - Karasee - Barentsee - Murmansk - Bremerhave

    Holocene fluctuations of neodymium isotope ratios in eastern Fram Strait sediments - An indication for deepwater variability?

    Get PDF
    EGU2012-11739 The Fram Strait as the only deep water connection of the world’s oceans to the Arctic plays a substantial role for the heat influx to the Arctic Ocean and controls freshening of the Nordic Seas through Arctic sea ice export. Large amounts of warm and saline Atlantic Water derived from the North Atlantic Drift transport most of the heat through eastern Fram Strait to the Arctic basin, resulting in year-round ice-free conditions. Arctic sea ice and cold and fresh waters exit the western part of the strait southward along the Greenland shelf. However, little is still known about the water mass transport at intermediate and bottom water depths in the Fram Strait. High-resolution Holocene sediment sequences from the Western Svalbard margin have been investigated for its neodymium isotope ratios stored in ferromanganese oxyhydroxide coatings of the sediment to derive information on the source of bottom seawater passing the site. The radiogenic isotope data are compared to a multitude of proxy indicators for the climatic and oceanographic variability in the eastern Fram Strait during the past 8,500 years. In order to obtain a calibration of the Nd isotope compositions extracted from sediments to modern bottom water mass signatures in the area, a set of core top and water samples from different water depths in the Fram Strait was additionally investigated for its present-day Nd isotope signatures. A significantly higher inflow of deepwater produced in the Nordic Seas to the core site is inferred for the earlier periods of the Holocene. Cooler surface water conditions and increased sea ice abundances during the late Holocene coincide with more radiogenic Nd isotope ratios likely resembling the neoglacial trend of the northern North Atlantic

    Water mass evolution of the Greenland Sea since late glacial times

    Get PDF
    Four sediment cores from the central and northern Greenland Sea basin, a crucial area for the renewal of North Atlantic deep water, were analyzed for planktic foraminiferal fauna, planktic and benthic stable oxygen and carbon isotopes as well as ice-rafted debris to reconstruct the environmental variability in the last 23 kyr. During the Last Glacial Maximum, the Greenland Sea was dominated by cold and sea-ice bearing surface water masses. Meltwater discharges from the surrounding ice sheets affected the area during the deglaciation, influencing the water mass circulation. During the Younger Dryas interval the last major freshwater event occurred in the region. The onset of the Holocene interglacial was marked by an increase in the advection of Atlantic Water and a rise in sea surface temperatures (SST). Although the thermal maximum was not reached simultaneously across the basin, benthic isotope data indicate that the rate of overturning circulation reached a maximum in the central Greenland Sea around 7 ka. After 6–5 ka a SST cooling and increasing sea-ice cover is noted. Conditions during this so-called "Neoglacial" cooling, however, changed after 3 ka, probably due to enhanced sea-ice expansion, which limited the deep convection. As a result, a well stratified upper water column amplified the warming of the subsurface waters in the central Greenland Sea, which were fed by increased inflow of Atlantic Water from the eastern Nordic Seas. Our data reveal that the Holocene oceanographic conditions in the Greenland Sea did not develop uniformly. These variations were a response to a complex interplay between the Atlantic and Polar water masses, the rate of sea-ice formation and melting and its effect on vertical convection intensity during times of Northern Hemisphere insolation changes

    Million years of Greenland Ice Sheet history recorded in ocean sediments

    Get PDF
    Geological records from Tertiary and Quaternary terrestrial and oceanic sections have documented the presence of ice caps and sea ice covers both in the Southern and the Northern hemispheres since Eocene times, approximately since 45 Ma. In this paper focussing on Greenland we mainly use the occurrences of coarse ice-rafted debris (IRD) in Quaternary and Tertiary ocean sediment cores to conclude on age and origin of the glaciers/ice sheets, which once produced the icebergs transporting this material into the adjacent ocean. Deep-sea sediment cores with their records of ice-rafting from off NE Greenland, Fram Strait and to the south of Greenland suggest the more or less continuous existence of the Greenland ice sheet since 18 Ma, maybe much longer, and hence far beyond the stratigraphic extent of the Greenland ice cores. The timing of onset of glaciation on Greenland and whether it has been glaciated continuously since, are wide open questions of its long-term history. We also urgently need new scientific drilling programs in the waters around Greenland, in particular in the segment of the Arctic Ocean to the north of Greenland
    • …
    corecore