7,582 research outputs found

    Habitable Climates: The Influence of Eccentricity

    Full text link
    In the outer regions of the habitable zone, the risk of transitioning into a globally frozen "snowball" state poses a threat to the habitability of planets with the capacity to host water-based life. We use a one-dimensional energy balance climate model (EBM) to examine how obliquity, spin rate, orbital eccentricity, and ocean coverage might influence the onset of such a snowball state. For an exoplanet, these parameters may be strikingly different from the values observed for Earth. Since, for constant semimajor axis, the annual mean stellar irradiation scales with (1-e^2)^(-1/2), one might expect the greatest habitable semimajor axis (for fixed atmospheric composition) to scale as (1-e^2)^(-1/4). We find that this standard ansatz provides a reasonable lower bound on the outer boundary of the habitable zone, but the influence of obliquity and ocean fraction can be profound in the context of planets on eccentric orbits. For planets with eccentricity 0.5, our EBM suggests that the greatest habitable semimajor axis can vary by more than 0.8 AU (78%!) depending on obliquity, with higher obliquity worlds generally more stable against snowball transitions. One might also expect that the long winter at an eccentric planet's apoastron would render it more susceptible to global freezing. Our models suggest that this is not a significant risk for Earth-like planets around Sun-like stars since such planets are buffered by the thermal inertia provided by oceans covering at least 10% of their surface. Since planets on eccentric orbits spend much of their year particularly far from the star, such worlds might turn out to be especially good targets for direct observations with missions such as TPF-Darwin. Nevertheless, the extreme temperature variations achieved on highly eccentric exo-Earths raise questions about the adaptability of life to marginally or transiently habitable conditions.Comment: References added, text and figures updated, accepted by Ap

    On the penetration of meridional circulation below the solar convection zone

    Full text link
    Meridional flows with velocities of a few meters per second are observed in the uppermost regions of the solar convection zone. The amplitude and pattern of the flows deeper in the solar interior, in particular near the top of the radiative region, are of crucial importance to a wide range of solar magnetohydrodynamical processes. In this paper, we provide a systematic study of the penetration of large-scale meridional flows from the convection zone into the radiative zone. In particular, we study the effects of the assumed boundary conditions applied at the convective-radiative interface on the deeper flows. Using simplified analytical models in conjunction with more complete numerical methods, we show that penetration of the convectively-driven meridional flows into the deeper interior is not necessarily limited to a shallow Ekman depth but can penetrate much deeper, depending on how the convective-radiative interface flows are modeled.Comment: 13 pages, 5 figures. Subitted to Ap

    Kinematics of Gas Near the Galactic Center

    Get PDF
    The number of similarities between the nuclei of some ordinary galaxies and the quasars, radio galaxies, and Seyfert nuclei has become impressively large. Ambartsumian's recent account of the resemblances makes it hard not to believe that these energetic objects are galaxies passing through a difficult age, or perhaps suffering a not-so-rare galactic malady. And very few would deny that to understand this exceptional behavior it would be well to know how normal galaxies function in their innermost regions

    Imaging the Solar Tachocline by Time-Distance Helioseismology

    Full text link
    The solar tachocline at the bottom of the convection zone is an important region for the dynamics of the Sun and the solar dynamo. In this region, the sound speed inferred by global helioseismology exhibits a bump of approximately 0.4% relative to the standard solar model. Global helioseismology does not provide any information on possible latitudinal variations or asymmetries between the Northern and Southern hemisphere. Here, we develop a time-distance helioseismology technique, including surface- and deep-focusing measurement schemes and a combination of both, for two-dimensional tomographic imaging of the solar tachocline that infers radial and latitudinal variations in the sound speed. We test the technique using artificial solar oscillation data obtained from numerical simulations. The technique successfully recovers major features of the simplified tachocline models. The technique is then applied to SOHO/MDI medium-l data and provides for the first time a full two-dimensional sound-speed perturbation image of the solar tachocline. The one-dimensional radial profile obtained by latitudinal averaging of the image is in good agreement with the previous global helioseismology result. It is found that the amplitude of the sound-speed perturbation at the tachocline varies with latitude, but it is not clear whether this is in part or fully an effect of instrumental distortion. Our initial results demonstrate that time-distance helioseismology can be used to probe the deep interior structure of the Sun, including the solar tachocline.Comment: accepted for publication by Ap

    Particle Aggregation in a turbulent Keplerian flow

    Get PDF
    In the problem of planetary formation one seeks a mechanism to gather small solid particles together into larger accumulations of solid matter. Here we describe a scenario in which turbulence mediates this process by aggregating particles into anticyclonic regions. If, as our simulations suggest, anticyclonic vortices form as long-lived coherent structures, the process becomes more powerful because such vortices trap particles effectively. Even if the turbulence is decaying, following the upheaval that formed the disk, there is enough time to make the dust distribution quite lumpy.Comment: 16 pages, 9 figure

    The effect of the tachocline on differential rotation in the Sun

    Full text link
    In this paper, we present a model for the effects of the tachocline on the differential rotation in the solar convection zone. The mathematical technique relies on the assumption that entropy is nearly constant ("well-mixed") in isorotation surfaces both outside and within the tachocline. The resulting solutions exhibit nontrivial features that strikingly resemble the true tachocline isorotation contours in unexpected detail. This strengthens the mathematical premises of the theory. The observed rotation pattern in the tachocline shows strong quadrupolar structure, an important feature that is explicitly used in constructing our solutions. The tachocline is treated locally as an interior boundary layer of small but finite thickness, and an explicit global solution is then constructed. A dynamical link can thus be established between the internal jump in the angular velocity at the tachocline and the spread of angular velocities observed near the solar surface. In general, our results suggest that the bulk of the solar convection zone is in thermal wind balance, and that simple quadrupolar stresses, local in radius, mediate the tachocline transition from differential rotation to uniform rotation in the radiative interior.Comment: 20 Pages, 4 figures, to appear in MNRA

    Instabilities in the Envelopes and Winds of Very Massive Stars

    Full text link
    The high luminosity of Very Massive Stars (VMS) means that radiative forces play an important, dynamical role both in the structure and stability of their stellar envelope, and in driving strong stellar-wind mass loss. Focusing on the interplay of radiative flux and opacity, with emphasis on key distinctions between continuum vs. line opacity, this chapter reviews instabilities in the envelopes and winds of VMS. Specifically, we discuss how: 1) the iron opacity bump can induce an extensive inflation of the stellar envelope; 2) the density dependence of mean opacity leads to strange mode instabilities in the outer envelope; 3) desaturation of line-opacity by acceleration of near-surface layers initiates and sustains a line-driven stellar wind outflow; 4) an associated line-deshadowing instability leads to extensive small-scale structure in the outer regions of such line-driven winds; 5) a star with super-Eddington luminosity can develop extensive atmospheric structure from photon bubble instabilities, or from stagnation of flow that exceeds the "photon tiring" limit; 6) the associated porosity leads to a reduction in opacity that can regulate the extreme mass loss of such continuum-driven winds. Two overall themes are the potential links of such instabilities to Luminous Blue Variable (LBV) stars, and the potential role of radiation forces in establishing the upper mass limit of VMS.Comment: 44 pages, 13 figures. Chapter to appear in the book "Very Massive Stars in the Local Universe", Springer, J.S. Vink, e

    Approaching community-level greywater managementin non-sewered settlements in South Africa

    Get PDF
    This study investigates sustainable options for community-level management of greywater in low-income settlements without on-site waterborne sanitation in South Africa. As a consequence of the limited resource base of both the local authorities and the inhabitants of the settlements, these options need to be inexpensive, technologically simple and socially acceptable. A variety of social and technological options are thus being implemented in collaboration with the inhabitants and the local authorities, and their efficacy evaluated. The hypothesis is that involving the inhabitants in the development of solutions is likely to be more effective in the management of greywater in these settlements than the traditional approach where the local authorities provide rudimentary engineered services after minimal consultation. Following an initial scoping study that covered six of the nine provinces of South Africa, four settlements in the Western Cape Province were selected for a second, more detailed study. The study employs the Participatory Action Research (PAR) method which emphasises participation, collaboration and consensual decision-making with the goal of ensuring long term sustainability of social and technological interventions

    Uncertainties in stellar evolution models: convective overshoot

    Full text link
    In spite of the great effort made in the last decades to improve our understanding of stellar evolution, significant uncertainties remain due to our poor knowledge of some complex physical processes that require an empirical calibration, such as the efficiency of the interior mixing related to convective overshoot. Here we review the impact of convective overshoot on the evolution of stars during the main Hydrogen and Helium burning phases.Comment: Proc. of the workshop "Asteroseismology of stellar populations in the Milky Way" (Sesto, 22-26 July 2013), Astrophysics and Space Science Proceedings, (eds. A. Miglio, L. Girardi, P. Eggenberger, J. Montalban
    corecore