115 research outputs found

    Flow cytometry data standards

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flow cytometry is a widely used analytical technique for examining microscopic particles, such as cells. The Flow Cytometry Standard (FCS) was developed in 1984 for storing flow data and it is supported by all instrument and third party software vendors. However, FCS does not capture the full scope of flow cytometry (FCM)-related data and metadata, and data standards have recently been developed to address this shortcoming.</p> <p>Findings</p> <p>The Data Standards Task Force (DSTF) of the International Society for the Advancement of Cytometry (ISAC) has developed several data standards to complement the raw data encoded in FCS files. Efforts started with the Minimum Information about a Flow Cytometry Experiment, a minimal data reporting standard of details necessary to include when publishing FCM experiments to facilitate third party understanding. MIFlowCyt is now being recommended to authors by publishers as part of manuscript submission, and manuscripts are being checked by reviewers and editors for compliance. Gating-ML was then introduced to capture gating descriptions - an essential part of FCM data analysis describing the selection of cell populations of interest. The Classification Results File Format was developed to accommodate results of the gating process, mostly within the context of automated clustering. Additionally, the Archival Cytometry Standard bundles data with all the other components describing experiments. Here, we introduce these recent standards and provide the very first example of how they can be used to report FCM data including analysis and results in a standardized, computationally exchangeable form.</p> <p>Conclusions</p> <p>Reporting standards and open file formats are essential for scientific collaboration and independent validation. The recently developed FCM data standards are now being incorporated into third party software tools and data repositories, which will ultimately facilitate understanding and data reuse.</p

    GenePattern flow cytometry suite

    Get PDF
    Background: Traditional flow cytometry data analysis is largely based on interactive and time consuming analysis of series two dimensional representations of up to 20 dimensional data. Recent technological advances have increased the amount of data generated by the technology and outpaced the development of data analysis approaches. While there are advanced tools available, including many R/BioConductor packages, these are only accessible programmatically and therefore out of reach for most experimentalists. GenePattern is a powerful genomic analysis platform with over 200 tools for analysis of gene expression, proteomics, and other data. A web-based interface provides easy access to these tools and allows the creation of automated analysis pipelines enabling reproducible research. Results: In order to bring advanced flow cytometry data analysis tools to experimentalists without programmatic skills, we developed the GenePattern Flow Cytometry Suite. It contains 34 open source GenePattern flow cytometry modules covering methods from basic processing of flow cytometry standard (i.e., FCS) files to advanced algorithms for automated identification of cell populations, normalization and quality assessment. Internally, these modules leverage from functionality developed in R/BioConductor. Using the GenePattern web-based interface, they can be connected to build analytical pipelines. Conclusions: GenePattern Flow Cytometry Suite brings advanced flow cytometry data analysis capabilities to users with minimal computer skills. Functionality previously available only to skilled bioinformaticians is now easily accessible from a web browser

    flowCore: a Bioconductor package for high throughput flow cytometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent advances in automation technologies have enabled the use of flow cytometry for high throughput screening, generating large complex data sets often in clinical trials or drug discovery settings. However, data management and data analysis methods have not advanced sufficiently far from the initial small-scale studies to support modeling in the presence of multiple covariates.</p> <p>Results</p> <p>We developed a set of flexible open source computational tools in the R package flowCore to facilitate the analysis of these complex data. A key component of which is having suitable data structures that support the application of similar operations to a collection of samples or a clinical cohort. In addition, our software constitutes a shared and extensible research platform that enables collaboration between bioinformaticians, computer scientists, statisticians, biologists and clinicians. This platform will foster the development of novel analytic methods for flow cytometry.</p> <p>Conclusion</p> <p>The software has been applied in the analysis of various data sets and its data structures have proven to be highly efficient in capturing and organizing the analytic work flow. Finally, a number of additional Bioconductor packages successfully build on the infrastructure provided by flowCore, open new avenues for flow data analysis.</p

    Agile workflow for interactive analysis of mass cytometry data

    Get PDF
    Motivation: Single-cell proteomics technologies, such as mass cytometry, have enabled characterization of cell-tocell variation and cell populations at a single-cell resolution. These large amounts of data, require dedicated, interactive tools for translating the data into knowledge. Results: We present a comprehensive, interactive method called Cyto to streamline analysis of large-scale cytometry data. Cyto is a workflow-based open-source solution that automates the use of state-of-the-art single-cell analysis methods with interactive visualization. We show the utility of Cyto by applying it to mass cytometry data from peripheral blood and high-grade serous ovarian cancer (HGSOC) samples. Our results show that Cyto is able to reliably capture the immune cell sub-populations from peripheral blood and cellular compositions of unique immune- and cancer cell subpopulations in HGSOC tumor and ascites samples.Peer reviewe

    FuGEFlow: data model and markup language for flow cytometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flow cytometry technology is widely used in both health care and research. The rapid expansion of flow cytometry applications has outpaced the development of data storage and analysis tools. Collaborative efforts being taken to eliminate this gap include building common vocabularies and ontologies, designing generic data models, and defining data exchange formats. The Minimum Information about a Flow Cytometry Experiment (MIFlowCyt) standard was recently adopted by the International Society for Advancement of Cytometry. This standard guides researchers on the information that should be included in peer reviewed publications, but it is insufficient for data exchange and integration between computational systems. The Functional Genomics Experiment (FuGE) formalizes common aspects of comprehensive and high throughput experiments across different biological technologies. We have extended FuGE object model to accommodate flow cytometry data and metadata.</p> <p>Methods</p> <p>We used the MagicDraw modelling tool to design a UML model (Flow-OM) according to the FuGE extension guidelines and the AndroMDA toolkit to transform the model to a markup language (Flow-ML). We mapped each MIFlowCyt term to either an existing FuGE class or to a new FuGEFlow class. The development environment was validated by comparing the official FuGE XSD to the schema we generated from the FuGE object model using our configuration. After the Flow-OM model was completed, the final version of the Flow-ML was generated and validated against an example MIFlowCyt compliant experiment description.</p> <p>Results</p> <p>The extension of FuGE for flow cytometry has resulted in a generic FuGE-compliant data model (FuGEFlow), which accommodates and links together all information required by MIFlowCyt. The FuGEFlow model can be used to build software and databases using FuGE software toolkits to facilitate automated exchange and manipulation of potentially large flow cytometry experimental data sets. Additional project documentation, including reusable design patterns and a guide for setting up a development environment, was contributed back to the FuGE project.</p> <p>Conclusion</p> <p>We have shown that an extension of FuGE can be used to transform minimum information requirements in natural language to markup language in XML. Extending FuGE required significant effort, but in our experiences the benefits outweighed the costs. The FuGEFlow is expected to play a central role in describing flow cytometry experiments and ultimately facilitating data exchange including public flow cytometry repositories currently under development.</p

    AutoSpill is a principled framework that simplifies the analysis of multichromatic flow cytometry data.

    Get PDF
    Compensating in flow cytometry is an unavoidable challenge in the data analysis of fluorescence-based flow cytometry. Even the advent of spectral cytometry cannot circumvent the spillover problem, with spectral unmixing an intrinsic part of such systems. The calculation of spillover coefficients from single-color controls has remained essentially unchanged since its inception, and is increasingly limited in its ability to deal with high-parameter flow cytometry. Here, we present AutoSpill, an alternative method for calculating spillover coefficients. The approach combines automated gating of cells, calculation of an initial spillover matrix based on robust linear regression, and iterative refinement to reduce error. Moreover, autofluorescence can be compensated out, by processing it as an endogenous dye in an unstained control. AutoSpill uses single-color controls and is compatible with common flow cytometry software. AutoSpill allows simpler and more robust workflows, while reducing the magnitude of compensation errors in high-parameter flow cytometry

    Validation of biomarkers to predict response to immunotherapy in cancer: Volume I — pre-analytical and analytical validation

    Full text link
    corecore