31 research outputs found

    Photonic textiles for pulse oximetry

    Full text link
    Biomedical sensors, integrated into textiles would enable monitoring of many vitally important physiological parameters during our daily life. In this paper we demonstrate the design and performance of a textile based pulse oximeter, operating on the forefinger tip in transmission mode. The sensors consisted of plastic optical fibers integrated into common fabrics. To emit light to the human tissue and to collect transmitted light the fibers were either integrated into a textile substrate by embroidery (producing microbends with a nominal diameter of 0.5 to 2 mm) or the fibers inside woven patterns have been altered mechanically after fabric production. In our experiments we used a two-wavelength approach (690 and 830 nm) for pulse wave acquisition and arterial oxygen saturation calculation. We have fabricated different specimens to study signal yield and quality, and a cotton glove, equipped with textile based light emitter and detector, has been used to examine movement artifacts. Our results show that textile-based oximetry is feasible with sufficient data quality and its potential as a wearable health monitoring device is promising

    Autoimmune hyperphosphatemic tumoral calcinosis in a patient with FGF23 autoantibodies

    Get PDF
    Hyperphosphatemic familial tumoral calcinosis (HFTC)/hyperostosis-hyperphosphatemia syndrome (HHS) is an autosomal recessive disorder of ectopic calcification due to deficiency of or resistance to intact fibroblast growth factor 23 (iFGF23). Inactivating mutations in FGF23, N-acetylgalactosaminyltransferase 3 (GALNT3), or KLOTHO (KL) have been reported as causing HFTC/HHS. We present what we believe is the first identified case of autoimmune hyperphosphatemic tumoral calcinosis in an 8-year-old boy. In addition to the classical clinical and biochemical features of hyperphosphatemic tumoral calcinosis, the patient exhibited markedly elevated intact and C-terminal FGF23 levels, suggestive of FGF23 resistance. However, no mutations in FGF23, KL, or FGF receptor 1 (FGFR1) were identified. He subsequently developed type 1 diabetes mellitus, which raised the possibility of an autoimmune cause for hyperphosphatemic tumoral calcinosis. Luciferase immunoprecipitation systems revealed markedly elevated FGF23 autoantibodies without detectable FGFR1 or Klotho autoantibodies. Using an in vitro FGF23 functional assay, we found that the FGF23 autoantibodies in the patient's plasma blocked downstream signaling via the MAPK/ERK signaling pathway in a dose-dependent manner. Thus, this report describes the first case, to our knowledge, of autoimmune hyperphosphatemic tumoral calcinosis with pathogenic autoantibodies targeting FGF23. Identification of this pathophysiology extends the etiologic spectrum of hyperphosphatemic tumoral calcinosis and suggests that immunomodulatory therapy may be an effective treatment

    Phosphate Restriction Prevents Metabolic Acidosis and Curbs Rise in FGF23 and Mortality in Murine Folic Acid–Induced AKI

    Get PDF
    Background: In AKI, plasma FGF23 and Pi_{i} rise rapidly and are independently associated with disease severity and outcome. Methods: The effects of normal (NP) and low (LP) dietary Pi_{i} were investigated in mice with FA-AKI after 3, 24, and 48 hours and 14 days. Results: After 24 hours of AKI, the LP diet curbed the rise in plasma FGF23 and prevented that of parathyroid hormone and calcitriol as well as of osseous but not splenic or thymic Fgf23 mRNA expression. The absence of Pth prevented the rise in calcitriol and reduced the elevation of FGF23 in FA-AKI with the NP diet. Furthermore, the LP diet attenuated the rise in renal and plasma IL-6 and mitigated the decline in renal α-Klotho. After 48 hours, the LP diet further dampened renal IL-6 expression and resulted in lower urinary neutrophil gelatinase-associated lipocalin. In addition, the LP diet prevented the increased formation of CPPs. Fourteen days after AKI induction, the LP diet group maintained less elevated plasma FGF23 levels and had greater survival than the NP diet group. This was associated with prevention of metabolic acidosis, hypocalcemia, hyperkalemia, and cardiac electrical disturbances. Conclusions: This study reveals Pi_{i}-sensitive FGF23 expression in the bone but not in the thymus or spleen in FA-AKI and demonstrates that Pi_{i} restriction mitigates CPP formation, inflammation, acidosis, and mortality in this model. These results suggest that dietary Pi_{i} restriction could have prophylactic potential in patients at risk for AKI

    Social Experiments in the Mesoscale: Humans Playing a Spatial Prisoner's Dilemma

    Get PDF
    Background: The evolutionary origin of cooperation among unrelated individuals remains a key unsolved issue across several disciplines. Prominent among the several mechanisms proposed to explain how cooperation can emerge is the existence of a population structure that determines the interactions among individuals. Many models have explored analytically and by simulation the effects of such a structure, particularly in the framework of the Prisoner’s Dilemma, but the results of these models largely depend on details such as the type of spatial structure or the evolutionary dynamics. Therefore, experimental work suitably designed to address this question is needed to probe these issues. Methods and Findings: We have designed an experiment to test the emergence of cooperation when humans play Prisoner’s Dilemma on a network whose size is comparable to that of simulations. We find that the cooperation level declines to an asymptotic state with low but nonzero cooperation. Regarding players ’ behavior, we observe that the population is heterogeneous, consisting of a high percentage of defectors, a smaller one of cooperators, and a large group that shares features of the conditional cooperators of public goods games. We propose an agent-based model based on the coexistence of these different strategies that is in good agreement with all the experimental observations. Conclusions: In our large experimental setup, cooperation was not promoted by the existence of a lattice beyond a residual level (around 20%) typical of public goods experiments. Our findings also indicate that both heterogeneity and a ‘‘moody’

    Experimental evolution of adaptive divergence under varying degrees of gene flow

    Get PDF
    Adaptive divergence is the key evolutionary process generating biodiversity by means of natural selection. Yet, the conditions under which it can arise in the presence of gene flow remain contentious. To address this question, we subjected 132 sexually reproducing fission yeast populations, sourced from two independent genetic backgrounds, to disruptive ecological selection and manipulated the level of migration between environments. Contrary to theoretical expectations, adaptive divergence was most pronounced when migration was either absent (allopatry) or maximal (sympatry), but was much reduced at intermediate rates (parapatry and local mating). This effect was apparent across central life-history components (survival, asexual growth and mating) but differed in magnitude between ancestral genetic backgrounds. The evolution of some fitness components was constrained by pervasive negative correlations (trade-off between asexual growth and mating), while others changed direction under the influence of migration (for example, survival and mating). In allopatry, adaptive divergence was mainly conferred by standing genetic variation and resulted in ecological specialization. In sympatry, divergence was mainly mediated by novel mutations enriched in a subset of genes and was characterized by the repeated emergence of two strategies: an ecological generalist and an asexual growth specialist. Multiple loci showed consistent evidence for antagonistic pleiotropy across migration treatments providing a conceptual link between adaptation and divergence. This evolve-and-resequence experiment shows that rapid ecological differentiation can arise even under high rates of gene flow. It further highlights that adaptive trajectories are governed by complex interactions of gene flow, ancestral variation and genetic correlations

    Exploring a guided, silent reading intervention: Effects on struggling third-grade readers’ achievement

    No full text
    The authors’ purpose was to explore the effects of a supplementary, guided, silent reading intervention with 80 struggling third-grade readers who were retained at grade level as a result of poor performance on the reading portion of a criterion referenced state assessment. The students were distributed in 11 elementary schools in a large, urban school district in the state of Florida. A matched, quasi-experimental design was constructed using propensity scores for this study. Students in the guided, silent reading intervention, Reading Plus, evidenced higher, statistically significant mean scores on the Florida Comprehensive Assessment Test criterion assessment measure of reading at posttest. The effect size, favoring the guided, silent reading intervention group was large, 1 full standard deviation, when comparing the 2 comparison groups’ mean posttest scores. As such, the results indicate a large advantage for providing struggling third-grade readers guided silent reading fluency practice in a computer-based practice environment. No significant difference was found between the treatment and control group on the Stanford Achievement Test–10 (SAT-10) posttest scores, although posttest scores for the treatment group trended higher than the control. After conducting a power analysis, it was determined that the sample size (n = 80) was too small to provide sufficient statistical power to detect a difference in third-grade students’ SAT-10 scores

    Multifrequency frequency-domain spectrometer for tissue analysis

    Full text link
    In this paper we describe the modification and assessment of a standard multidistance frequency-domain near infrared spectroscopy (NIRS) instrument to perform multifrequency frequency-domain NIRS measurements. The first aim of these modifications was to develop an instrument that enables measurement of small volumes of tissue such as the cervix, which is too small to be measured using a multidistance approach. The second aim was to enhance the spectral resolution to be able to determine the absolute concentrations of oxy-, deoxy- and total hemoglobin, water, and lipids. The third aim was to determine the accuracy and error of measurement of this novel instrument in both in vitro and in vivo environments. The modifications include two frequency synthesizers with variable, freely adjustable frequency, broadband high-frequency amplifiers, the development of a novel avalanche photodiode (APD) detector and demodulation circuit, additional laser diodes with additional wavelengths, and a respective graphic user interface to analyze the measurements. To test the instrument and algorithm, phantoms with optical properties similar to those of biological tissue were measured and analyzed. The results show that the absorption coefficient can be determined with an error of <10%. The error of the scattering coefficient was <31%. Since the accuracy of the chromophore concentrations depends on the absorption coefficient and not on the scattering coefficient, the <10% error is the clinically relevant parameter. In addition, the new APD had similar accuracy as the standard photomultiplier tubes. To determine the accuracy of chromophore concentration measurements we employed liquid Intralipid® phantoms that contained 99% water, 1% lipid, and an increasing concentration of hemoglobin in steps of 0.010 mM. Water concentration was measured with an accuracy of 6.5% and hemoglobin concentration with an error of 0.0024 mM independent of the concentration. The measured lipid concentration was negative, which shows that the current setup is not suitable for measuring lipids. Measurements on the forearm confirmed reasonable values for water and hemoglobin concentrations, but again not for lipids. As an example of a future application, chromophore concentrations in the cervix were measured and comparable values to the forearm were found. In conclusion the modified instrument enables measurement of water concentration in addition to oxy- and deoxyhemoglobin concentrations with a single source-detector distance in small tissue samples. Future work will focus on resolving the lipid component

    Frequency-domain near-infrared spectroscopy of the uterine cervix during regular pregnancies

    Full text link
    Preterm labor is a common obstetric complication. Clinical evaluation of cervical ripening to predict preterm labor is very inaccurate. We used frequency-domain near-infrared spectroscopy (FD-NIRS) to non-invasively investigate the changes of the optical properties (i.e., absorption and scattering of light) in the uterine cervix during regular pregnancies. Optical properties of uterine cervices were measured in 13 patients at various time points of regular pregnancies. For each gestational trimester, mean values with 95% confidence intervals were calculated for oxy-, deoxy-, and total hemoglobin concentration (O(2)Hb, HHb, tHb), tissue oxygen saturation and water content and statistically significant differences between the trimesters were determined. The wavelength-dependent scattering (scatter power) was calculated by an exponential fit. O(2)Hb, and tHb and the scatter power showed an increase as a function of the gestational age. Differences between the second and the third trimester were statistically significant. HHb and the water content showed no significant change over time. Our results show that FD-NIRS is a promising diagnostic tool for providing information about cervical content of hemoglobin, water, and extracellular matrix proteins. We propose this technology to assess the cervical ripening and eventually to predict preterm labor
    corecore