2,286 research outputs found

    Enhanced hydrogen storage in Ni/Ce composite oxides

    Get PDF
    The properties of dried (but not calcined) coprecipitated nickel ceria systems have been investigated in terms of their hydrogen emission characteristics following activation in hydrogen. XRD and BET data obtained on the powders show similarities to calcined ceria but it is likely that the majority of the material produced by the coprecipitation process is largely of an amorphous nature. XPS data indicate very little nickel is present on the outermost surface of the particles. Nevertheless, the thermal analytical techniques (TGA, DSC and TPD-MS) indicate that the hydrogen has access to the catalyst present and the nickel is able to generate hydrogen species capable of interacting with the support. Both unactivated and activated materials show two hydrogen emission features, viz. low temperature and high temperature emissions (LTE and HTE, respectively) over the temperature range 50 and 500 °C. A clear effect of hydrogen interaction with the material is that the activated sample not only emits much more hydrogen than the corresponding unactivated one but also at lower temperatures. H2 dissociation occurs on the reduced catalyst surface and the spillover mechanism transfers this active hydrogen into the ceria, possibly via the formation and migration of OH− species. The amount of hydrogen obtained (0.24 wt%) is 10× higher than those observed for calcined materials and would suggest that the amorphous phase plays a critical role in this process. The affiliated emissions of CO and CO2 with that of the HTE hydrogen (and consumption of water) strongly suggests a proportion of the hydrogen emission at this point arises from the water gas shift type reaction. It has not been possible from the present data to delineate between the various hydrogen storage mechanisms reported for ceria

    Semi-classical Laguerre polynomials and a third order discrete integrable equation

    Full text link
    A semi-discrete Lax pair formed from the differential system and recurrence relation for semi-classical orthogonal polynomials, leads to a discrete integrable equation for a specific semi-classical orthogonal polynomial weight. The main example we use is a semi-classical Laguerre weight to derive a third order difference equation with a corresponding Lax pair.Comment: 11 page

    Detoxification in rehabilitation in England: effective continuity of care or unhappy bedfellows?

    Get PDF
    There is evidence that residential detoxification alone does not provide satisfactory treatment outcomes and that outcomes are significantly enhanced when clients completing residential detoxification attend rehabilitation services (Gossop, Marsden, Stewart, & Rolfe, 1999; Ghodse, Reynolds, Baldacchino, et al., 2002). One way of increasing the likelihood of this continuity of treatment is by providing detoxification and rehabilitation within the same treatment facility to prevent drop-out, while the client awaits a rehabilitation bed or in the transition process. However, there is little research evidence available on the facilities that offer both medical detoxification and residential rehabilitation. The current study compares self-reported treatment provision in 87 residential rehabilitation services in England, 34 of whom (39.1%) reported that they offered detoxification services within their treatment programmes. Although there were no differences in self-reported treatment philosophies, residential rehabilitation services that offered detoxification were typically of shorter duration overall, had significantly more beds and reported offering more group work than residential rehabilitation services that did not offer detoxification. Outcomes were also different, with twice as many clients discharged on disciplinary grounds from residential rehabilitation services without detoxification facilities. The paper questions the UK classification of residential drug treatment services as either detoxification or rehabilitation and suggests the need for greater research focus on the aims, processes and outcomes of this group of treatment providers

    The Dynamic Formation of Prominence Condensations

    Full text link
    We present simulations of a model for the formation of a prominence condensation in a coronal loop. The key idea behind the model is that the spatial localization of loop heating near the chromosphere leads to a catastrophic cooling in the corona (Antiochos & Klimchuk 1991). Using a new adaptive grid code, we simulate the complete growth of a condensation, and find that after approx. 5,000 s it reaches a quasi-steady state. We show that the size and the growth time of the condensation are in good agreement with data, and discuss the implications of the model for coronal heating and SOHO/TRACE observations.Comment: Astrophysical Journal latex file, 20 pages, 7 b-w figures (gif files

    Higher analogues of the discrete-time Toda equation and the quotient-difference algorithm

    Full text link
    The discrete-time Toda equation arises as a universal equation for the relevant Hankel determinants associated with one-variable orthogonal polynomials through the mechanism of adjacency, which amounts to the inclusion of shifted weight functions in the orthogonality condition. In this paper we extend this mechanism to a new class of two-variable orthogonal polynomials where the variables are related via an elliptic curve. This leads to a `Higher order Analogue of the Discrete-time Toda' (HADT) equation for the associated Hankel determinants, together with its Lax pair, which is derived from the relevant recurrence relations for the orthogonal polynomials. In a similar way as the quotient-difference (QD) algorithm is related to the discrete-time Toda equation, a novel quotient-quotient-difference (QQD) scheme is presented for the HADT equation. We show that for both the HADT equation and the QQD scheme, there exists well-posed ss-periodic initial value problems, for almost all \s\in\Z^2. From the Lax-pairs we furthermore derive invariants for corresponding reductions to dynamical mappings for some explicit examples.Comment: 38 page

    The staircase method: integrals for periodic reductions of integrable lattice equations

    Full text link
    We show, in full generality, that the staircase method provides integrals for mappings, and correspondences, obtained as traveling wave reductions of (systems of) integrable partial difference equations. We apply the staircase method to a variety of equations, including the Korteweg-De Vries equation, the five-point Bruschi-Calogero-Droghei equation, the QD-algorithm, and the Boussinesq system. We show that, in all these cases, if the staircase method provides r integrals for an n-dimensional mapping, with 2r<n, then one can introduce q<= 2r variables, which reduce the dimension of the mapping from n to q. These dimension-reducing variables are obtained as joint invariants of k-symmetries of the mappings. Our results support the idea that often the staircase method provides sufficiently many integrals for the periodic reductions of integrable lattice equations to be completely integrable. We also study reductions on other quad-graphs than the regular 2D lattice, and we prove linear growth of the multi-valuedness of iterates of high-dimensional correspondences obtained as reductions of the QD-algorithm.Comment: 40 pages, 23 Figure

    Electronic and structural properties of vacancies on and below the GaP(110) surface

    Full text link
    We have performed total-energy density-functional calculations using first-principles pseudopotentials to determine the atomic and electronic structure of neutral surface and subsurface vacancies at the GaP(110) surface. The cation as well as the anion surface vacancy show a pronounced inward relaxation of the three nearest neighbor atoms towards the vacancy while the surface point-group symmetry is maintained. For both types of vacancies we find a singly occupied level at mid gap. Subsurface vacancies below the second layer display essentially the same properties as bulk defects. Our results for vacancies in the second layer show features not observed for either surface or bulk vacancies: Large relaxations occur and both defects are unstable against the formation of antisite vacancy complexes. Simulating scanning tunneling microscope pictures of the different vacancies we find excellent agreement with experimental data for the surface vacancies and predict the signatures of subsurface vacancies.Comment: 10 pages, 6 figures, Submitted to Phys. Rev. B, Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    Effects of Antibiotic Physicochemical Properties on Their Release Kinetics from Biodegradable Polymer Microparticles

    Get PDF
    Purpose: This study investigated the effects of the physicochemical properties of antibiotics on the morphology, loading efficiency, size, release kinetics, and antibiotic efficacy of loaded poly(DL-lactic-co-glycolic acid) (PLGA) microparticles (MPs) at different loading percentages. Methods: Cefazolin, ciprofloxacin, clindamycin, colistin, doxycycline, and vancomycin were loaded at 10 and 20 wt% into PLGA MPs using a water-in-oil-in water double emulsion fabrication protocol. Microparticle morphology, size, loading efficiency, release kinetics, and antibiotic efficacy were assessed. Results: The results from this study demonstrate that the chemical nature of loaded antibiotics, especially charge and molecular weight, influence the incorporation into and release of antibiotics from PLGA MPs. Drugs with molecular weights less than 600 Da displayed biphasic release while those with molecular weights greater than 1,000 Da displayed triphasic release kinetics. Large molecular weight drugs also had a longer delay before release than smaller molecular weight drugs. The negatively charged antibiotic cefazolin had lower loading efficiency than positively charged antibiotics. Microparticle size appeared to be mainly controlled by fabrication parameters, and partition and solubility coefficients did not appear to have an obvious effect on loading efficiency or release. Released antibiotics maintained their efficacy against susceptible strains over the duration of release. Duration of release varied between 17 and 49 days based on the type of antibiotic loaded. Conclusions: The data from this study indicate that the chemical nature of antibiotics affects properties of antibiotic-loaded PLGA MPs and allows for general prediction of loading and release kinetics
    corecore