784 research outputs found

    Approximate Optimal Atmospheric Entry Trajectories

    Get PDF
    Approximate optimal atmospheric entry trajectories maximizing terminal function of velocity, heading angle, flight path angle, and altitud

    A robust momentum management and attitude control system for the space station

    Get PDF
    A game theoretic controller is synthesized for momentum management and attitude control of the Space Station in the presence of uncertainties in the moments of inertia. Full state information is assumed since attitude rates are assumed to be very assurately measured. By an input-output decomposition of the uncertainty in the system matrices, the parameter uncertainties in the dynamic system are represented as an unknown gain associated with an internal feedback loop (IFL). The input and output matrices associated with the IFL form directions through which the uncertain parameters affect system response. If the quadratic form of the IFL output augments the cost criterion, then enhanced parameter robustness is anticipated. By considering the input and the input disturbance from the IFL as two noncooperative players, a linear-quadratic differential game is constructed. The solution in the form of a linear controller is used for synthesis. Inclusion of the external disturbance torques results in a dynamic feedback controller which consists of conventional PID (proportional integral derivative) control and cyclic disturbance rejection filters. It is shown that the game theoretic design allows large variations in the inertias in directions of importance

    System characterization of positive real conditions

    Get PDF
    Necessary and sufficient conditions for positive realness in terms of state space matrices are presented under the assumption of complete controllability and complete observability of square systems with independent inputs. As an alternative to the positive real lemma and to the s-domain inequalities, these conditions provide a recursive algorithm for testing positive realness which result in a set of simple algebraic conditions. By relating the positive real property to the associated variational problem, a unified derivation of necessary and sufficient conditions for optimality of both singular and nonsingular problems is derived

    The separate computation of arcs for optimal flight paths with state variable inequality constraints

    Get PDF
    Computation of arcs for optimal flight paths with state variable inequality constraint

    Peak-Seeking Control Using Gradient and Hessian Estimates

    Get PDF
    A peak-seeking control method is presented which utilizes a linear time-varying Kalman filter. Performance function coordinate and magnitude measurements are used by the Kalman filter to estimate the gradient and Hessian of the performance function. The gradient and Hessian are used to command the system toward a local extremum. The method is naturally applied to multiple-input multiple-output systems. Applications of this technique to a single-input single-output example and a two-input one-output example are presented

    Robust feedback control of Rayleigh-Bénard convection

    Get PDF
    We investigate the application of linear-quadratic-Gaussian (LQG) feedback control, or, in modern terms, H2 control, to the stabilization of the no-motion state against the onset of Rayleigh-Bénard convection in an infinite layer of Boussinesq fluid. We use two sensing and actuating methods: The planar sensor model (Tang & Bau 1993, 1994), and the shadowgraph model (Howle 1997a). By extending the planar sensor model to the multi-sensor case, it is shown that a LQG controller is capable of stabilizing the no-motion state up to 14.5 times the critical Rayleigh number. We characterize the robustness of the controller with respect to parameter uncertainties, unmodelled dynamics. Results indicate that the LQG controller provides robust performances even at high Rayleigh numbers

    Systems and Methods for Peak-Seeking Control

    Get PDF
    A computerized system and method for peak-seeking-control that uses a unique Kalman filter design to optimize a control loop, in real time, to either maximize or minimize a performance function of a physical object ("plant"). The system and method achieves more accurate and efficient peak-seeking-control by using a time-varying Kalman filter to estimate both the performance function gradient (slope) and Hessian (curvature) based on direct position measurements of the plant, and does not rely upon modeling the plant response to persistent excitation. The system and method can be naturally applied in various applications in which plant performance functions have multiple independent parameters, and it does not depend upon frequency separation to distinguish between system dimensions

    Approximate optimal guidance for the advanced launch system

    Get PDF
    A real-time guidance scheme for the problem of maximizing the payload into orbit subject to the equations of motion for a rocket over a spherical, non-rotating earth is presented. An approximate optimal launch guidance law is developed based upon an asymptotic expansion of the Hamilton - Jacobi - Bellman or dynamic programming equation. The expansion is performed in terms of a small parameter, which is used to separate the dynamics of the problem into primary and perturbation dynamics. For the zeroth-order problem the small parameter is set to zero and a closed-form solution to the zeroth-order expansion term of Hamilton - Jacobi - Bellman equation is obtained. Higher-order terms of the expansion include the effects of the neglected perturbation dynamics. These higher-order terms are determined from the solution of first-order linear partial differential equations requiring only the evaluation of quadratures. This technique is preferred as a real-time, on-line guidance scheme to alternative numerical iterative optimization schemes because of the unreliable convergence properties of these iterative guidance schemes and because the quadratures needed for the approximate optimal guidance law can be performed rapidly and by parallel processing. Even if the approximate solution is not nearly optimal, when using this technique the zeroth-order solution always provides a path which satisfies the terminal constraints. Results for two-degree-of-freedom simulations are presented for the simplified problem of flight in the equatorial plane and compared to the guidance scheme generated by the shooting method which is an iterative second-order technique

    A Game Theoretic Fault Detection Filter

    Get PDF
    The fault detection process is modelled as a disturbance attenuation problem. The solution to this problem is found via differential game theory, leading to an H(sub infinity) filter which bounds the transmission of all exogenous signals save the fault to be detected. For a general class of linear systems which includes some time-varying systems, it is shown that this transmission bound can be taken to zero by simultaneously bringing the sensor noise weighting to zero. Thus, in the limit, a complete transmission block can he achieved, making the game filter into a fault detection filter. When we specialize this result to time-invariant system, it is found that the detection filter attained in the limit is identical to the well known Beard-Jones Fault Detection Filter. That is, all fault inputs other than the one to be detected (the "nuisance faults") are restricted to an invariant subspace which is unobservable to a projection on the output. For time-invariant systems, it is also shown that in the limit, the order of the state-space and the game filter can be reduced by factoring out the invariant subspace. The result is a lower dimensional filter which can observe only the fault to be detected. A reduced-order filter can also he generated for time-varying systems, though the computational overhead may be intensive. An example given at the end of the paper demonstrates the effectiveness of the filter as a tool for fault detection and identification
    corecore