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The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space

The Center and local industry to actively support research in the computing and

RICIS

Concept

=

information sciences. As part of this endeavor, UH-Clear Lake pro_ a
partnership with JSC to jointly define and manage an integrated program of research

in advanced data processing technology needed for JSC's main missions, including
administrative, engineering and science responsibilities. JSC agreed and entered into __

a three-year cooperative agreement with UH-C|ear Lake beginning in May, 1986, to

jointly plan and execute such research through RICIS. Additionally, under

Cooperative Agreement NCC 9-16, computing and educational facilities are shared
by the two institutions tO Conduct the research ....... _

The mission of RICIS is to conduct, coordinate and disseminate research on -_ '

computing and information systems among researchers, sponsors and users from

UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear
Lake, the mission is being implemented through interdisciplinary involvement of _ -" =
facuity and Students from each of the four schools: Business, Education, Human

Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clear

Lake establishes relationships with other universities and research organizations;-, i_,
havlng common research interests, to pl:0vlde :addltlonal sources of expertiseto W
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and
research objectives to advance knowledge in the computing and informatiotr :]

scien_. Working jointly with NASA/JSC, P.lCTS-a-dvises on research needs, J
recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results

into the cooperative goals of UH-Clear Lake and NASA/JSC. _
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Abstract

Necessary and sufficient conditions for positive realness in

terms of state space magices are presented under the assumption of

complete controllability and complete ohservabillty of square

systems with independent inputs. As an alternative to the positive

real lemma and to the s-domain inequalities, these conditions

provide a re.curdve algorithm for testing positive realness which

result in • set of flmple algebraic conditions. By relating the

positive real property to the •T_uk-'/ated variational problem, the

paper outlines • unified derivation of necessary and sufficient

conditions for optimality d both singular and nonsingular problems.

1. Introduction

Positive real sy_ems play • major role in control theory,

especially in adaptive control, and in stability analysis. The

impressive development of adaptive conu'ol and self-turning

regulation over the last two decades [1,2] is hinged on safi.d'action

of some positive realness conditions. Al_afively, _ :n._k:rable _

initial knowledge about the controlled plant must be given. The

prior knowledge is used to implement refenmce models, identifiers,

or observ_-besed con_ of about the same order u the plant.

Since the prior as-s_ons about the controlled plant may never be

entirely satisfied, the stability propen/es of the related ad_tive

schemes are debatable. Therefore, • direct adaptive control

procedure which does not use identifier or observer-based

controllers in the feedback loop is prefcn, ed. The implemem_ion of

such an algorithm requires positive real controlled plants or

alternatively, a s'ynthesis_ofa positive _ plant on t_ basisof the

actual pianL

1. This work was Ix_'c_ly s_ by Eglin AFB under C.,_trtct 1:08635-87-

K0417 a_d by NASA J_ Space Center through the RICIS Pmgntm of the
Umvcrsiry of Hou_oe _u_ lake.

2 Dcpanmem of Aem_c.e Engineering and Engineering Mechanic_, University
of Texas. Ausun. TX 78712.
Y Mechanical. Aerospace and Nuc|e_rEngineering Depa,-'_nent.Unlve_/ty of
California. Los Angeles. CA 9(3024-1597
4 RAFAEL P. O. B 2250. HaKS- IsmaJ

The existing tools fo¢ analysis and synthesis of positive real

systems axe based in the s-domain on complex variable inequalities

which are inconvenient or in the state space requiring the positive

real lerrana equations. These tools are cofnputarionally complex and

thee is It need for an easily used complementary tool. In Sections 2

and 3, necessary and saff-fi_nt condirlons for positive real systems

with independent inputs arc developed using optimal control theory

for the associated partially singular problem. It is shown that in the

totally singular case, these conditions tre consistent with the

generalized Legondte-Oebsch condition {3,4]. The new conditions

are as-u_ated with the state space matrices of a minimal realization

of a squaresystem. The resulting test for positive realness reduces

to t'ecu_vely testing certain square malrices for positive definiteness

and the solution to an algebraic Riccafi equation. As an immediate

result ofthe new necessary and sufficient coeditions, we also show

that the zebus of a positive real system lie in the closed left h_[f

complex plane. Some exLmple= are given in Section 4 to illustrate

the theory. Concluding mat_ are given in Section 5.

The derivation of the above resadts is related to dissipative

systems. Basic definitions and physical characted_cs are presented

below.

1.1 Dissipative System

Consider the system input-output descriptionH: U --* Y

where U = I._ (R.) and Y = L_ ('R.). The notadon L_ (R.) is us_

to denote the space of sqmu-e integrable functions f: R. --* R t

where R÷ = [to.-,). The supply rate associated with this system is

defined as a function w: R t x R 'n --, R where

w(u,y)= y'Qy + 2y'Su + u'Ru (l l)

and Q _ R "'m . $ ¢ R _. R e R _z are constant matrices, with

Q and R symmemc.

Definition l.l [$]: A dynamical system H is dissipative

with respect to the supply rate w(u.y) if and only if

It

W[U(0, y(t)l dt > 0 (1 2)

to

for all tt > to and all u e lJ 2, whenever the initial state satisfies

x(to) = 0.

w



Remark l.l: _ corresponds m dissipativeness

where Q = R = 0. l= m, S = _ Im and [m ismxm idendtymau'ix.

Remark 1.2: Positiven_alnesscorrespondsto passivity

where the dynamical systemis I_eg and drm invtmnt.

Remark 1.3: The concept of a supply rate is nflated in the

general case to the "stored energy" for the system. As an example.,

suppose tha_ d'_ system under consider_on is an electrical netwock.

whose elements are constants, and y(t) the vecto¢ of _ng

port voltage. Then the system is dissipative with respect to the

supply rate w(u,y) = u'y provided that all the resistances,

inductancesand capacitance are non-negative.

1.2 Energy, Power and Information Relationships in

Dissipative Systems

The class of dissipative systems which hu • finite

dimensional internal state is completely described in terms of energy

storage and power dissipation. Con.dd_ng this class, the vario¢1

represented by the applied inpu_ signals and the injected power into

the available ourput signals.

1.3 Review or the Positive Real Property

The positive real pmpen), is related directly to the transfer

function matrix description of the system. The positive real lemma,

presented in Section 2, connects the positive realness to the

parameters of a system realization with complete cona'oHabili .ty and

complete observability.

The Positive Real Property [7]: Let G(s) be an m x m

matrix of functions of • complex variable s. then G(s) is termed

positive real if the following conditions are satisfied:

6) All the elements orE(s) an: analytic in Re[s] > O.

(ii) G(s) is real for real positive s.

(iii) G*(s) + G(s) > 0 for Re [sl > 0.

when: (-)* denotes complex conjugate transpose.

Remark L4: If G(s) is • real radonal mamx of functions

facets of the standard state space model can be uscg'ia_ with the of s, then necessary and sufficient conditions for the positive real

concepts of energy, power and infogmadon, property to hold am given by the following theorem.

Assume that the system under conddcradon Is described by

a linear, timc-iavariant system

x/, Ax + Bu (1.3)

y --"Cx + Du (1.4)

wherexe R'o ue R l, yE R" andA, B, CandDtmomstam

matrices with appropriate dimension. Then, foL]owin| [6], the

system _ can be mgankd as representing:

1. tn energy.mansformadm and dissipation map, associated

with the mauix A.

2. a power injection map, associated with the maukes B

and D.

3. an Information-extortion map, associsted with tl_

matrix C

Figure 1 describes the-enea'gy-pow_-informadon maps

associated with the system matrices.

A-- emzg7 uansfomsa_n malJ

Fig. 1 Energy-Power.Information maps associated

with the Sysmm Man'ices

The mamx B repn:sents the input coupling between the

information represented by the applied input signals and the power

available for injection into the system states. The matrix C

represents the output coupling between the en_gy in the system

states and the information in the available output signals. The mau'ix

D represents the output coupling between the information

Theorem 1.1 [7]: Let G(s) be a real rational matrix of

functions of s. Then, CKs) is positive real if and only if:

(3 No dement of G(s) hasa pole in Rc[s]> 0.

Ca') G*(j_) + G(jm) > 0 for all real co, with jm not a poleof

any element of G(s).

(|ii) If jw0 is a pole of any element of G(s), it is at most a

simple pole. and the residue matrix.

ko = (s - jm0) G(s) ifjcoo is finite.
s_j_

k. = lira G(s)/s ifja_0 is infinite.

is nonnegative definite Hen'nidan,

Following Definition 1.I, if the system is positive real, the

angle be,twoca rig output vect0¢ y(t) and the input vector u(t) is

bounded below by - 90 deg. and above by + 90 deg,

2o Relations Between Optimal Control

and Positive Realness

2, I The Related Variational Problem

Consider the cost functional

tt
V[xo,_u(-)l= /" w[u(t),y(t)]dt (2. I)

to

where the supply rate

w(u,y) = y'u = u'D'u + x'Cu (2.2)

is associated wi_ system (1.3) and (1.4). where the dimensions of

u and y are m. The problem is to find necessary and sufficient

conditions for optimality of u* (.) • U to minimi,,- V[xo.to, u(-)l.
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denoted V*[xo.to]. subjcc_ to the dynamic equation of (1.3) where

xCto) = xo is prescribed.

Remark 2.1: Since only the symmetric pan of D

contributes to w(u,y), then

w(u.y) ffi _ ( u'Ru + 2x'C, ) (2.3)

where

R ffiD + D' (2.4)

Remark 2.2: If R > 0, and rank (R) = r < m, there exists

an orthogonaltransformationF = [FI ,F2]suchthat

Et31rf R [rl. F:] = (2.5)

where Rr is positive.For instance,l",and Fz may consistof

normalized eigenvectorsof R associatedwith nonzero and zero

eigenvalues,respectively[8].Them isa naturalpartitioningof the

controlvectorassociatedwiththisn"ansfommfion,a r..dimcnsional

3. Positive Real Conditions in Terms

of State-Space Matrices
4,

Necessary and sufficient conditions for the nonnegativity of

V[ 0, to, u(.)] arc given by the existence of x < 0, L, and W which

satisfy (2.6). Let G(s) be an mxm matrix of degree n. Consider a

minimal re.a.fizafion {A, B, C, D} representing the finite-dime.sional

linear time-invariant dynamic equations given by (1.3) and (1.4). In

terms of stale space mawiccs A, B, C, and D, (2.6) gives necessary

and sufficient conditions for a positive real system. In this section,

new necessaryand sufficientconditionsaredeveloped.

3.1 Standard Formulation of the Partially Singular

Problem

Assume that G(s) is a square mamx of proper rational

nonsingularcontrol and an (m-r)-dimcnsional singuhreontroL function with independent columns. For any realization, the

2.2 Positive Real Lemma Equations

Necessary and sd'ficient condition for V*[x0,t0] to be

bounded below over a finite time interval [to, it] ate presented in

Theorem 11.3.3 of [9]. The required positive real conditions are

obtained via the extension of the optimality condition to the fimc-

invariant, infinite-time case [10].

Under the complete controllability and complete

observabUL'y assumption of system (1.3), necessary and sufficient

conditions for the nonnegativity of V[ O. to, a(.)l are that _ exist

_<0, I., and W such that

where W and L are rrmuice_ with _dkneadon.

By idemifying P = - _. the positive zeal Lemma is stated.

The Positive Real Lemma [7]: Let G(s) be an mxm

mamx of real rational functions of a complex variable s. with

G(--) < ". Let {A, B, C, D} be a minimal realization of O(s).

Then, G(s) is positive real if and only ff th¢_ exist real matrices P,

L, and W withP positivedefiniteand syam_a'i¢,suchthat:

PA + A'P = -L'L (2.7)

B'P = C - W'I., (2.8)

W'W = D + D' (2.9)

Remark 2.2: The generalized Legcndz_-_cbsch condition.

which is a necessary condition for V*[x0,to] > - " in the totally

singular case, given in [3] for a linear time-invariant system can be

written as

(12h) = CB - (C'B)'ffi0 (2.10)

(lq,) = CAB + (CAB)' < 0 (2.lI)

where H istheva.dationalHamihonian and k • R _'isthe_iated

Lagra.agemultiplier

H = u'Cx + k'(Ax + Bu), _.' = - H..

By letting R = 0. the necessary conditions (2.10) and (2.1 l) are

also obtained from the positive real lemm_

matrices C and B arc full rank. Without loss of generality, we

consider a minimal realization [A. B, C. D} of the form that A is an

nxn matrix which is pa.,'dtioned as

Aft A,, A,2]
A2I A22 '

where All is t kxk matrix, and A22 is an (n.k)x(n-k) matrix.

wh_'e k is the dimension of the singular conrail.

where Rr is a rxr nonsingular matrix corresponding to the

nonsingular control Br is an axr matrix. B_ is an nxk matrix

related to the singular control, _ is a rxn matrix, and C_ is a kxn

matrix, where r ffim-k is the dimension of the nonsingular control.

If n > k, then Ct has the following form

C, = [ C,t. 0].

where C,t is a nonsingular matrix. Correspondingly. B, is written

Fm'l we defu'_this as a standard realization.
as LB,zJ"

Nodce that the realization can be obtained by choosing

= suitable bases for the stai¢ space and +the inpu_/oui_t space. For

example, suppose {A, B, C, G(-)} is a minimal realization of

G(s). Let the column vectors of F, where F is described in

Remark 2.2. be a basis of the input/output space, then the

following tzansformation y = 1"_, u = r'v is defined. Furthermore,

let qt, q2 ..... _-_. qn.k._ ..... qn be a basis of the state space,

where q.-k.t ..... Ch span the null space of I'_'_, and q_, q2 .....

qn-k are arbitrary vectors such that Q = [q_, q2 ..... ch.k, qa.k+t,

.... qa ] is nonsingular. This defines a transformation x ffiQ_. The

resulting dynamic equ_don can be wrinen as

_=A_+Bv (3.1)

1'1= C_ + Dv, (3.2)

where A = Q.t_Q, B = QIBi", C = I"'CQ. and D = i"G(**)r. The

transfer function matrix of this system is r"G(s)l", the positive



realness of G(s) is equivalent to the positive realness of PG(s)I".

The application of (2.6) and development of the new necessaz3,and

sufficient conditions for the i_a'tially singudar problem will be

discussed under assumption of a standard realization as discussed.

3.2 Derivation of New Necesmtry and Sufficient

Conditions

Necessary and sufficient condition for nonnegative of

V[0,t0,u(.)] as given by condition (2.6) can be restated in the

follo_ng equivalent forms: There exist a g < 0 and a matrix V

such that

[ rtA+A'n gB + C'] =V'V"B'g+C R (3.3)

Furthermore. R being positive semi-definite is a necessary

conditionforsatisfying(3.3).If R > O, then(3.3)can be reduced

toa conditionbasedupon a Reccatiequation.That is,thereexistsa

negative definite solution st to tee algetmdc Riecati equadoe

7t(A -BR-IC ) + (A - BR'tC )'_t-x BR-tB'g - C'P.-tC= O.

(3.4)

If R is dngular, (3.3) can be written as

+++1B t'g + Cr _ 0 = V'V

B s'g + C, 0 0

or, equlvalendy, thereex/_a st<0anda_Vr_r.hduU

x Bs+ _' =0

and

(3.5)

[TtA+A'st stBr+C"]=V(VtBr'g+cr 1_ (3.6)

If the dimension of the state is less than or equal to the

dimension of thesingular control Le.,n £ k, x can be determined

from equation(3.5).if and only ifa x < 0 is soiree from (3.5)

and the same stsatisfies(3.6),thesystem ispositivereaL If n >

k, thefactst< 0 and equation(3.5)imply that

C,B, = (C_B,)' = - B,'st B, > 0. (3.7)

Since C, = [ Ctl, 0 ], and C,t is aondaguhu'. Equation (3.7)

also implies that B,t is nonsingular. F_ (32,) provides •

linear constraint on st which h <Ctsmmed in Lemma 3.1 below.

Lemma 3.1: x < 0, g B, + C,' ,, 0 if and only if C.,B+

> 0and

st=[ "(B''3"I C'' +(B't')'IB'_'x'B'2(B't)'t-gtB.2(B,,) "t "(B't)'tB'2'g'],,

(3.8)

To prove

(3.9)

(3.10)

for some _1 < 0.

Proof: Denote _ as 7t =

_12' gl

sufficiency, we assume that act < 0, CsBs • 0, and

_ll _=" (BsI')'|C,I + (Btt')'IBt2'glBt2(BtI)'I

It12 : . (B,I")'IB,2'ICI.

[i+,]Define F = , thenF isnonsingularand
0 [

+:II °I
0 I _ttz' _t -(TtD'rtt2' I

0 nt 0 _t

Since C,B, = C,1Btt • 0,

- (B=t') tC,t = " (B+i') tC, iB, (B,D t < O

Therefore F;tF' < 0, and it also implies that n < 0. Furthermore.

by using gtt and xt2 defined in (3.9) and (3.10). we get

7tB'+C" =rgt'B't+gt2B'z]+[C"l=I:l'LTtt2'B,,+ntB,2 (3.11) "

Next, we prove the necessity. IfTt < 0. then nt < 0. From riB, +

Ca' = 0 we get

nltB,l + III2B, 2 + C, t' = 0 (3.12)

rCt2'B+t + 7taBs2 = 0 (3.13)

By solving (3.12) and (3.13), the expressions of 7tIt and n t2 are

obtained which are the same as shown in equations (3.9) and

(3.10). QE.D.

Let the roan'ix shown in (3.6) be denoted as M( x, Rr )

++. c:jM(g, Rt) = . __
Br'_ + Cr 1_ l-

For any nonsingular matrix 1", (3.6) is equivalent to "I'M( 7t. R r )T

= VT' VT, whare Vris a ma_'ix with proper dimension. Bydefining

[0 B., O]
Tr" I B,2 0

0 0 I

and using st defined in (3.8) as a function of _i, then Tr is U

nonsingular, and

T,'M( x, R, ) T, = Mr2' M22 M23 + +

M13' M23' M33
where

Ii]Mr1=[0 I 0]M(t.R) w

= |at( A22 - B,2(BsI)'IAI2) + (A22 - Bs2(Btl)'lAl2)'ttt :___

I'B.] "M12= [ O I O] M(g,R)[ B_2 = Xl ( A2tB,I+ Ax2B,x-

Bt2(B,t)'IAttBtvBt2(Btt)'tAt2B,2)- CtlAt2 [] !

M22 = [ B,I', B,2', 0 ] M0t.R) 2

= - (C,ABt + B,'A'C,')

+,[il
= - C,B, + B,'C,

M33 = [ 0, 0, l I M(g,R) =' Rr.

m

u
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By defining

At = A22 - B,2(B,t)IAt2 (3.14)

BI = [ A2tBst+ A22B,v B,2(Bsl)'IALIB,V

B,2(Bst)'IAI2B_. Br2] (3.15)

Ct = [ -C_IAt2.0] (3.16)

[-(C,AB,+ B,'A'C,') -C,B,+B,'C/]Rt = - Br'Ct'+CrB, R¢ , (3.17)

a condition which is equivalent to (3.6) can be stated as the follows:

There exist a 7tl < 0 and a matrix V l such that

[ _IAt + At're' /ttBr+ Cl' ] .Vl'vl'Bt'Ttt+ Ct RI (3.1g)

According to the positive real lemma, Equadon (3.18) implies that

{ AI. Bt, Ca. _ ] is positivercM.

3.3 Necessary and Sufficient Conditions for Positive

Realness

The resultsin Section 3.2 are summarized in the next

theorem as an alternativenecessaryand sufficientconditionfor

testing positive realness of a square system.

Theorem 3.1: The necessary and sufficient condition for

{A, B, C, D} to be posidve real is that

(i) R _ 0;

(it) If R > 0. thereexists a positive definite solution P to the

following algebraic Riccati equation

P( A - BR'iC ) + ( A - BR'IC )_ + P BR-IB'P + C'P.-tC = {3;,

(iii) IfrankR=r<ra, andn£m-r, thettexists

P ffi CtBt'(BsBt') "l > 0 satisfying PB, = 0-4' and

- P A- A'P - PBr+ Cr' ]
Br'P + C, Rr a >0;

(iv) IfrankR=r<m, andn>m-r, thetl C-_,=(CsBt)'>

0 and { Ai, B1, el, ._k } is positive real, where At, BI. Ca, and

RI are defined in equations (3.14) to (3.17).

Condition (it) is obtained by identifying P with - n in

equation (3.4). Condition (iii) is the interpretation of 0.5") and (3.6)

for the case n £ (m - r). If P = - = > 0 exists, then PB, = el',

PBsBs' = Cs'Bs, and P = CsBs'(BsBs') "1 > 0. _(_ondltion (iv)

corresponds to the situation we discussed through (3.7) to (3.13)

Remark: 3.i: Alternative tran_ormafionappmaches to the

singular problem using _the i_iiey mmsi'o_6o_: for the linem

quadratic problem axe given in [9] for the malrix caw. The approach

here is different via the su'ucturt oft given by _ 3.1.

- Rema_ 3.2: ff {A, B. C, D}' is a minimal realization,

then it is required for a positive real system that there exists a

posidve definite matrix P such that

PA+A_ _ 0

Therefore. it is required that Re Xi [A] < 0 and the Jordan form of

A has no blocks of size greater than lxl with pure imaginary

diagonal elements.

Remark 3.3: If G(s) is strictly proper, the minimal

realtzation is totally singulax, then the characteristic polynomial of

At = A22 - Bt2(Btt) tAt2 is equal to the zero polynomial of th<

system up to a nonzero scalar factor.

_(s) where
Proof: Let des G(s) = des ( C(ls- A) tB) = --,

A(s)

A(s) = des ( Is- A )

and W(s) it the zero polynomial of the system. Since state feedbacks

do not change the numeral.or of the .'.'.'._nsferfunction matrix, for any

matrix K,

det (Gk (s)) = des ( C(Is - A - BK )dB) = V(s.._._._)
Ak(S)

where &k(S)= des(Is-A -BK )

Let K = [ 0, (Btl)-IAI2 ], then

A+BK=[AI, 0 ]=[ A,, 0 ?A2I A22- Bt2(BsI)-IAI2 A21 AI

Ak(S) =det ( Is- A - BK) = det [ Is-All 0 1
-A21 Is-At

= det (Is-All) det (Is-At)

des (Gk (s)) = det ( C(Is - A - BK )'tB) = des (Cst(Is-At t) t B_)
det (Cst) det (Bsi)

= det (Is-All)

Tberefom,

ql(S) = Ak(S) des (Gk (s)) = de[ (Csl) det (Bsl) det (Is-At)

Q.E.D.

Remark 3.4: From (3.18) and Remark 3.3, we conclude

that there are n - m finite zero, for a positive real system and all the

zeros lie in the closed left half complex plane. In other words, the

system is minimum phase.

4. Examples

Theorem 3.1introducesa recursiveprocedurefortesdng

positiverealsystems, requestsonlyfortestinga seriesof matrices

CisBit > 0, for i = 0, !, 2 ..... l, and the solution to a algebraic

Riccati equation Pl > O, where i is the index associated with the

new system obtained from the i-th iteration, and i = 0 corresponds

to Bs, Ct, and P. The testing stopswhen RI becomes nonsingular,

or the dimension of the state is less or equal to the dimension of the

singularcontrol.

The following examplesillustratetheapplicationof Theorta'n

3.1.
(s_+2)'

Example 4.1: Given G(s)= s (s + l)(s + 3)' an

observable realization of G(s)is

A= -3 0 I , B= , C=[l.0.0]. D=O

0 0 0

F'trst iteration:

R=0

CB = (CB)' = I > 0

w



14'IAI= , Bt= . Ct = [ -!,0 ]. Rt -- 0.
--4 0

Second i_racion:

Rt =0

CIBt -- ( CtB1)' ", -1 < 0

Therefore,the syszem is noc pod6ve real.

(s + 1)2
Example 4.2: Given G(s) = s (s + 2)(s + 4) ' an

observable realization of G(s) is

A= -8 0 I , B= . C,,[I,0,0],

0 0 0

F'zrst iteration:
R=0
CB=(CB)'=I>0

At= , BI= , Ct =[-I,0 ], Rt=8.
-I 0

Second itera_on:

Rt = 8 > 0, the algebra_ Riccati equation is

Pl + Pt +
-4 0 8 0

[,4][,o]+ Pt Pl + = 0
4 16 0 0

which has a positivedef'mimsolution

Pl = I 0.0394 -0.0225

L --0.225 0.1557

Thc_fot'e, the sys_n is positive real.

>0

D_O.

Eumple 4.3:

realization of G(s) is

[0 01A = _p2 0 1 ,

0 O0

Fu_ i_tion:

R=O

CB = (CB)'= 1 >0

[o,1At = ,
-z 2 0

Rt =0.

Second itcrago_

Rl =0.

G(s) = s: + z z
s (sZ+ p2) •

[']B= o . c=[i.o.o].
Z2

CtBi = ( CIBl)'ffip2-z2> 0 ifand onlyif p2 > z2

A2=0, Bzffi-zZ(zZ-p2), C2=I, R2=0.

Thirditeranon-

R z = 0 l

I

P2 = C2B2'(BzB2')t = z2(pz.z 2) >Oifp2>z 2

- P2A',-A2'P2 --O.

"I'hcrcforc.thes.vstemispositiverealifand onlyifp2 > zz.

A minimal

D--O.

5. Summary and Conclusions

This paper reviews positive real system as a subclass of

dissipativesystemsand statesthepositivereallemma equations.By

usingthe variationalproblem associatedwiththepartiallysingular

problem, necessaryand sufficientconditionsfora system to be

positive real arc derived. These conditionsarc particularly

Innsparent by using I..,cmma3.1 which provides a uniquely

structureforthe matrixg. These positiverealnessconditionsarc

expressed in terms of the statespace matrix incq,,alitiesand

algebraicRiccatiequationsand do notdealwithincqualhiesin thes

domain or with solutionsof the positivereallemma cqu.ations.

These testsaredirect,and a systemeithersatisfiesthesecondiuons

or not. There is no requirement to searchover allmatrices Eo

determine if a condition can be satisfied as in the positive real

lemma. Examples are given which demonstrate the power of this

approach.
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