432 research outputs found
Hematological Changes in Women and Infants Exposed to an AZT-Containing Regimen for Prevention of Mother-to-child-transmission of HIV in Tanzania.
Tanzanian guidelines for prevention of mother-to-child-transmission of HIV (PMTCT) recommend an antiretroviral combination regimen involving zidovudine (AZT) during pregnancy, single-dosed nevirapine at labor onset, AZT plus Lamivudine (3TC) during delivery, and AZT/3TC for 1-4 weeks postpartum. As drug toxicities are a relevant concern, we assessed hematological alterations in AZT-exposed women and their infants. A cohort of HIV-positive women, either with AZT intake (n = 82, group 1) or without AZT intake (n = 62, group 2) for PMTCT during pregnancy, was established at Kyela District Hospital, Tanzania. The cohort also included the infants of group 1 with an in-utero AZT exposure ≥4 weeks, receiving AZT for 1 week postpartum (n = 41), and infants of group 2 without in-utero AZT exposure, receiving a prolonged 4-week AZT tail (n = 58). Complete blood counts were evaluated during pregnancy, birth, weeks 4-6 and 12. For women of group 1 with antenatal AZT intake, we found a statistically significant decrease in hemoglobin level, red blood cells, white blood cells, granulocytes, as well as an increase in red cell distribution width and platelet count. At delivery, the median red blood cell count was significantly lower and the median platelet count was significantly higher in women of group 1 compared to group 2. At birth, infants from group 1 showed a lower median hemoglobin level and granulocyte count and a higher frequency of anemia and granulocytopenia. At 4-6 weeks postpartum, the mean neutrophil granulocyte count was significantly lower and neutropenia was significantly more frequent in infants of group 2. AZT exposure during pregnancy as well as after birth resulted in significant hematological alterations for women and their newborns, although these changes were mostly mild and transient in nature. Research involving larger cohorts is needed to further analyze the impact of AZT-containing regimens on maternal and infant health
Advances in the therapy of Alzheimer's disease: Targeting amyloid beta and tau and perspectives for the future
Worldwide multidisciplinary translational research has led to a growing knowledge of the genetics and molecular pathogenesis of Alzheimer's disease (AD) indicating that pathophysiological brain alterations occur decades before clinical signs and symptoms of cognitive decline can be diagnosed. Consequently, therapeutic concepts and targets have been increasingly focused on early-stage illness before the onset of dementia; and distinct classes of compounds are now being tested in clinical trials. At present, there is a growing consensus that therapeutic progress in AD delaying disease progression would significantly decrease the expanding global burden. The evolving hypothesis- and evidence-based generation of new diagnostic research criteria for early-stage AD has positively impacted the development of clinical trial designs and the characterization of earlier and more specific target populations for trials in prodromal as well as in pre- and asymptomatic at-risk stages of AD
Alzheimer's Disease: a Review of its Visual System Neuropathology. Optical Coherence Tomography-a Potential Role As a Study Tool in Vivo
Alzheimer's disease (AD) is a prevalent, long-term progressive degenerative disorder with great social impact. It is currently thought that, in addition to neurodegeneration, vascular changes also play a role in the pathophysiology of the disease. Visual symptoms are frequent and are an early clinical manifestation; a number of psychophysiologic changes occur in visual function, including visual field defects, abnormal contrast sensitivity, abnormalities in color vision, depth perception deficits, and motion detection abnormalities. These visual changes were initially believed to be solely due to neurodegeneration in the posterior visual pathway. However, evidence from pathology studies in both animal models of AD and humans has demonstrated that neurodegeneration also takes place in the anterior visual pathway, with involvement of the retinal ganglion cells' (RGCs) dendrites, somata, and axons in the optic nerve. These studies additionally showed that patients with AD have changes in retinal and choroidal microvasculature. Pathology findings have been corroborated in in-vivo assessment of the retina and optic nerve head (ONH), as well as the retinal and choroidal vasculature. Optical coherence tomography (OCT) in particular has shown great utility in the assessment of these changes, and it may become a useful tool for early detection and monitoring disease progression in AD. The authors make a review of the current understanding of retinal and choroidal pathological changes in patients with AD, with particular focus on in-vivo evidence of retinal and choroidal neurodegenerative and microvascular changes using OCT technology.info:eu-repo/semantics/publishedVersio
Disclosure, stigma of HIV positive child and access to early infant diagnosis in the rural communities of OR Tambo District, South Africa: a qualitative exploration of maternal perspective
The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K
Molecular glue compounds induce protein-protein interactions that, in the context of a ubiquitin ligase, lead to protein degradation1. Unlike traditional enzyme inhibitors, these molecular glue degraders act substoichiometrically to catalyse the rapid depletion of previously inaccessible targets2. They are clinically effective and highly sought-after, but have thus far only been discovered serendipitously. Here, through systematically mining databases for correlations between the cytotoxicity of 4,518 clinical and preclinical small molecules and the expression levels of E3 ligase components across hundreds of human cancer cell lines3-5, we identify CR8-a cyclin-dependent kinase (CDK) inhibitor6-as a compound that acts as a molecular glue degrader. The CDK-bound form of CR8 has a solvent-exposed pyridyl moiety that induces the formation of a complex between CDK12-cyclin K and the CUL4 adaptor protein DDB1, bypassing the requirement for a substrate receptor and presenting cyclin K for ubiquitination and degradation. Our studies demonstrate that chemical alteration of surface-exposed moieties can confer gain-of-function glue properties to an inhibitor, and we propose this as a broader strategy through which target-binding molecules could be converted into molecular glues
Novel Biomarker of Oxidative Stress Is Associated With Risk of Death in Patients With Coronary Artery Disease
BACKGROUND: Free radical scavengers have failed to improve patient outcomes, promoting the concept that clinically important oxidative stress may be mediated by alternative mechanisms. We sought to examine the association of emerging aminothiol markers of nonfree radical mediated oxidative stress with clinical outcomes. METHODS AND RESULTS: Plasma levels of reduced (cysteine and glutathione) and oxidized (cystine and glutathione disulphide) aminothiols were quantified by high performance liquid chromatography in 1411 patients undergoing coronary angiography (mean age 63 years, male 66%). All patients were followed for a mean of 4.7 ± 2.1 years for the primary outcome of all-cause death (n=247). Levels of cystine (oxidized) and glutathione (reduced) were associated with risk of death (P+1 SD and <-1 SD, respectively) were associated with higher mortality (adjusted hazard ratio [HR], 1.63; 95% confidence interval [CI], 1.19-2.21; HR, 2.19; 95% CI, 1.50-3.19; respectively) compared with those outside these thresholds. Furthermore, the ratio of cystine/glutathione was also significantly associated with mortality (adjusted HR, 1.92; 95% CI, 1.39-2.64) and was independent of and additive to high-sensitivity C-reactive protein level. Similar associations were found for other outcomes of cardiovascular death and combined death and myocardial infarction. CONCLUSIONS: A high burden of oxidative stress, quantified by the plasma aminothiols, cystine, glutathione, and their ratio, is associated with mortality in patients with coronary artery disease, a finding that is independent of and additive to the inflammatory burden. Importantly, these data support the emerging role of nonfree radical biology in driving clinically important oxidative stress
Novel Biomarker of Oxidative Stress Is Associated With Risk of Death in Patients With Coronary Artery Disease
BACKGROUND: Free radical scavengers have failed to improve patient outcomes, promoting the concept that clinically important oxidative stress may be mediated by alternative mechanisms. We sought to examine the association of emerging aminothiol markers of nonfree radical mediated oxidative stress with clinical outcomes. METHODS AND RESULTS: Plasma levels of reduced (cysteine and glutathione) and oxidized (cystine and glutathione disulphide) aminothiols were quantified by high performance liquid chromatography in 1411 patients undergoing coronary angiography (mean age 63 years, male 66%). All patients were followed for a mean of 4.7 ± 2.1 years for the primary outcome of all-cause death (n=247). Levels of cystine (oxidized) and glutathione (reduced) were associated with risk of death (P+1 SD and <-1 SD, respectively) were associated with higher mortality (adjusted hazard ratio [HR], 1.63; 95% confidence interval [CI], 1.19-2.21; HR, 2.19; 95% CI, 1.50-3.19; respectively) compared with those outside these thresholds. Furthermore, the ratio of cystine/glutathione was also significantly associated with mortality (adjusted HR, 1.92; 95% CI, 1.39-2.64) and was independent of and additive to high-sensitivity C-reactive protein level. Similar associations were found for other outcomes of cardiovascular death and combined death and myocardial infarction. CONCLUSIONS: A high burden of oxidative stress, quantified by the plasma aminothiols, cystine, glutathione, and their ratio, is associated with mortality in patients with coronary artery disease, a finding that is independent of and additive to the inflammatory burden. Importantly, these data support the emerging role of nonfree radical biology in driving clinically important oxidative stress
Long-Term Follow Up of Patients with Mild-to-Moderate Alzheimer's Disease Treated with Bapineuzumab in a Phase III, Open-Label, Extension Study
BACKGROUND: A 3-year extension of two Phase III parent studies of intravenous (IV) bapineuzumab in patients with mild-to-moderate Alzheimer's disease dementia (apolipoprotein (APOE) ɛ4 carriers and noncarriers) is summarized. OBJECTIVES: The primary and secondary objectives were to evaluate the long-term safety, tolerability, and maintenance of efficacy of bapineuzumab. METHODS: A multicenter study in patients who had participated in double-blind placebo-controlled parent studies. Patients enrolled in the extension study were assigned to receive IV infusions of bapineuzumab (0.5 or 1.0 mg/kg) every 13 weeks until termination but were blinded to whether they had received bapineuzumab or placebo in the parent studies. RESULTS: A total of 1,462 (688 were APOEɛ4 carriers and 774 were noncarriers) patients were enrolled. Extension-onset adverse events occurred in >81% of the patients in each dose group. Fall, urinary tract infection, agitation, and ARIA-E occurred in ≥10% of participants. The incidence proportion of ARIA-E was higher among carriers and noncarriers who received bapineuzumab for the first time in the extension study (11.8% and 5.4%, respectively) versus those who were previously exposed in the parent studies (5.1% and 1.3%, respectively). After 6 to 12 months exposure to bapineuzumab IV in the extension study, similar deterioration of cognition and function occurred with no significant differences between the dose groups. CONCLUSIONS: Infusion of bapineuzumab 0.5 or 1.0 mg/kg every 13 weeks for up to 3 years was generally well tolerated, with a safety and tolerability profile similar to that in previous studies
A Wide and Deep Neural Network for Survival Analysis from Anatomical Shape and Tabular Clinical Data
We introduce a wide and deep neural network for prediction of progression
from patients with mild cognitive impairment to Alzheimer's disease.
Information from anatomical shape and tabular clinical data (demographics,
biomarkers) are fused in a single neural network. The network is invariant to
shape transformations and avoids the need to identify point correspondences
between shapes. To account for right censored time-to-event data, i.e., when it
is only known that a patient did not develop Alzheimer's disease up to a
particular time point, we employ a loss commonly used in survival analysis. Our
network is trained end-to-end to combine information from a patient's
hippocampus shape and clinical biomarkers. Our experiments on data from the
Alzheimer's Disease Neuroimaging Initiative demonstrate that our proposed model
is able to learn a shape descriptor that augments clinical biomarkers and
outperforms a deep neural network on shape alone and a linear model on common
clinical biomarkers.Comment: Data and Machine Learning Advances with Multiple Views Workshop,
ECML-PKDD 201
Fleeting Perceptual Experience and the Possibility of Recalling Without Seeing
We explore an intensely debated problem in neuroscience, psychology and philosophy: the degree to which the “phenomenological consciousness” of the experience of a stimulus is separable from the “access consciousness” of its reportability. Specifically, it has been proposed that these two measures are dissociated from one another in one, or both directions. However, even if it was agreed that reportability and experience were doubly dissociated, the limits of dissociation logic mean we would not be able to conclusively separate the cognitive processes underlying the two. We take advantage of computational modelling and recent advances in state-trace analysis to assess this dissociation in an attentional/experiential blink paradigm. These advances in state-trace analysis make use of Bayesian statistics to quantify the evidence for and against a dissociation. Further evidence is obtained by linking our finding to a prominent model of the attentional blink – the Simultaneous Type/Serial Token model. Our results show evidence for a dissociation between experience and reportability, whereby participants appear able to encode stimuli into working memory with little, if any, conscious experience of them. This raises the possibility of a phenomenon that might be called sight-blind recall, which we discuss in the context of the current experience/reportability debate
- …
