147 research outputs found

    Cosmological constraints on unparticle dark matter

    Full text link
    In unparticle dark matter (unmatter) models the equation of state of the unmatter is given by p=ρ/(2dU+1)p=\rho/(2d_U+1), where dUd_U is the scaling factor. Unmatter with such equations of state would have a significant impact on the expansion history of the universe. Using type Ia supernovae (SNIa), the baryon acoustic oscillation (BAO) measurements and the shift parameter of the cosmic microwave background (CMB) to place constraints on such unmatter models we find that if only the SNIa data is used the constraints are weak. However, with the BAO and CMB shift parameter data added strong constraints can be obtained. For the Λ\LambdaUDM model, in which unmatter is the sole dark matter, we find that dU>60d_U > 60 at 95% C.L. For comparison, in most unparticle physics models it is assumed dU<2d_U<2. For the Λ\LambdaCUDM model, in which unmatter co-exists with cold dark matter, we found that the unmatter can at most make up a few percent of the total cosmic density if dU<10d_U<10, thus it can not be the major component of dark matter.Comment: Replaced with revised version. BAO data is added to make a tighter constraint. Version accepted for publication on Euro.Phys.J.

    Cosmological model with interactions in the dark sector

    Get PDF
    A cosmological model is proposed for the current Universe consisted of non-interacting baryonic matter and interacting dark components. The dark energy and dark matter are coupled through their effective barotropic indexes, which are considered as functions of the ratio between their energy densities. It is investigated two cases where the ratio is asymptotically stable and their parameters are adjusted by considering best fits to Hubble function data. It is shown that the deceleration parameter, the densities parameters, and the luminosity distance have the correct behavior which is expected for a viable present scenario of the Universe.Comment: 6 pages, 8 figure

    Photon-axion conversion in intergalactic magnetic fields and cosmological consequences

    Get PDF
    Photon-axion conversion induced by intergalactic magnetic fields causes an apparent dimming of distant sources, notably of cosmic standard candles such as supernovae of type Ia (SNe Ia). We review the impact of this mechanism on the luminosity-redshift relation of SNe Ia, on the dispersion of quasar spectra, and on the spectrum of the cosmic microwave background. The original idea of explaining the apparent dimming of distant SNe Ia without cosmic acceleration is strongly constrained by these arguments. However, the cosmic equation of state extracted from the SN Ia luminosity-redshift relation remains sensitive to this mechanism. For example, it can mimic phantom energy.Comment: (14 pages, 9 eps figures) Contribution to appear in a volume of Lecture Notes in Physics (Springer-Verlag) on Axion

    Constraints on accelerating universe using ESSENCE and Gold supernovae data combined with other cosmological probes

    Full text link
    We use recently observed data: the 192 ESSENCE type Ia supernovae (SNe Ia), the 182 Gold SNe Ia, the 3-year WMAP, the SDSS baryon acoustic peak, the X-ray gas mass fraction in clusters and the observational H(z)H(z) data to constrain models of the accelerating universe. Combining the 192 ESSENCE data with the observational H(z)H(z) data to constrain a parameterized deceleration parameter, we obtain the best fit values of transition redshift and current deceleration parameter zT=0.6320.127+0.256z_{T}=0.632^{+0.256}_{-0.127}, q0=0.7880.182+0.182q_{0}=-0.788^{+0.182}_{-0.182}. Furthermore, using Λ\LambdaCDM model and two model-independent equation of state of dark energy, we find that the combined constraint from the 192 ESSENCE data and other four cosmological observations gives smaller values of Ω0m\Omega_{0m} and q0q_{0}, but a larger value of zTz_{T} than the combined constraint from the 182 Gold data with other four observations. Finally, according to the Akaike information criterion it is shown that the recently observed data equally supports three dark energy models: Λ\LambdaCDM, wde(z)=w0w_{de}(z)=w_{0} and wde(z)=w0+w1ln(1+z)w_{de}(z)=w_{0}+w_{1}\ln(1+z).Comment: 18 pages, 8 figure

    Lemaitre-Tolman-Bondi model and accelerating expansion

    Full text link
    I discuss the spherically symmetric but inhomogeneous Lemaitre-Tolman- Bondi (LTB) metric, which provides an exact toy model for an inhomogeneous universe. Since we observe light rays from the past light cone, not the expansion of the universe, spatial variation in matter density and Hubble rate can have the same effect on redshift as acceleration in a perfectly homogeneous universe. As a consequence, a simple spatial variation in the Hubble rate can account for the distant supernova data in a dust universe without any dark energy. I also review various attempts towards a semirealistic description of the universe based on the LTB model.Comment: Invited Review for a special Gen. Rel. Grav. issue on Dark Energy. 17 pages, 3 figure

    The Primordial Inflation Explorer (PIXIE): A Nulling Polarimeter for Cosmic Microwave Background Observations

    Get PDF
    The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. The instrument consists of a polarizing Michelson interferometer configured as a nulling polarimeter to measure the difference spectrum between orthogonal linear polarizations from two co-aligned beams. Either input can view the sky or a temperature-controlled absolute reference blackbody calibrator. PIXIE will map the absolute intensity and linear polarization (Stokes I, Q, and U parameters) over the full sky in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 um wavelength). Multi-moded optics provide background-limited sensitivity using only 4 detectors, while the highly symmetric design and multiple signal modulations provide robust rejection of potential systematic errors. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10^{-3} at 5 standard deviations. The rich PIXIE data set will also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy.Comment: 37 pages including 17 figures. Submitted to the Journal of Cosmology and Astroparticle Physic

    Improved Estimates of Cosmological Perturbations

    Full text link
    We recently derived exact solutions for the scalar, vector and tensor mode functions of a single, minimally coupled scalar plus gravity in an arbitrary homogeneous and isotropic background. These solutions are applied to obtain improved estimates for the primordial scalar and tensor power spectra of anisotropies in the cosmic microwave background.Comment: 31 pages, 4 figures, LaTeX 2epsilon, this version corrects an embarrasing mistake (in the published version) for the parameter q_C. Affected eqns are 105, 109-110, 124, 148-153 and 155-15

    Kaluza-Klein Cosmology With Modified Holographic Dark Energy

    Full text link
    We investigate the compact Kaluza-Klein cosmology in which modified holographic dark energy is interacting with dark matter. Using this scenario, we evaluate equation of state parameter as well as equation of evolution of the modified holographic dark energy. Further, it is shown that the generalized second law of thermodynamics holds without any constraint.Comment: 13 pages, accepted for publication in Gen. Relativ. Gravi

    Interacting Ghost Dark Energy in Non-Flat Universe

    Full text link
    A new dark energy model called "ghost dark energy" was recently suggested to explain the observed accelerating expansion of the universe. This model originates from the Veneziano ghost of QCD. The dark energy density is proportional to Hubble parameter, ρD=αH\rho_D=\alpha H, where α\alpha is a constant of order ΛQCD3\Lambda_{\rm QCD}^3 and ΛQCD100MeV\Lambda_{\rm QCD}\sim 100 MeV is QCD mass scale. In this paper, we extend the ghost dark energy model to the universe with spatial curvature in the presence of interaction between dark matter and dark energy. We study cosmological implications of this model in detail. In the absence of interaction the equation of state parameter of ghost dark energy is always wD>1w_D > -1 and mimics a cosmological constant in the late time, while it is possible to have wD<1w_D < -1 provided the interaction is taken into account. When k=0k = 0, all previous results of ghost dark energy in flat universe are recovered. To check the observational consistency, we use Supernova type Ia (SNIa) Gold sample, shift parameter of Cosmic Microwave Background radiation (CMB) and the Baryonic Acoustic Oscillation peak from Sloan Digital Sky Survey (SDSS). The best fit values of free parameter at 1σ1\sigma confidence interval are: Ωm0=0.350.03+0.02\Omega_m^0= 0.35^{+0.02}_{-0.03}, ΩD0=0.750.04+0.01\Omega_D^0=0.75_{-0.04}^{+0.01} and b2=0.080.03+0.03b^2=0.08^{+0.03}_{-0.03}. Consequently the total energy density of universe at present time in this model at 68% level equates to Ωtot0=1.100.05+0.02\Omega_{\rm tot}^0=1.10^{+0.02}_{-0.05}.Comment: 19 pages, 9 figures. V2: Added comments, observational consequences, references, figures and major corrections. Accepted for publication in General Relativity and Gravitatio

    Future cosmological evolution in f(R)f(R) gravity using two equations of state parameters

    Full text link
    We investigate the issues of future oscillations around the phantom divide for f(R)f(R) gravity. For this purpose, we introduce two types of energy density and pressure arisen from the f(R)f(R)-higher order curvature terms. One has the conventional energy density and pressure even in the beginning of the Jordan frame, whose continuity equation provides the native equation of state wDEw_{\rm DE}. On the other hand, the other has the different forms of energy density and pressure which do not obviously satisfy the continuity equation. This needs to introduce the effective equation of state weffw_{\rm eff} to describe the f(R)f(R)-fluid, in addition to the native equation of state w~DE\tilde{w}_{\rm DE}. We confirm that future oscillations around the phantom divide occur in f(R)f(R) gravities by introducing two types of equations of state. Finally, we point out that the singularity appears ar x=xcx=x_c because the stability condition of f(R)f(R) gravity violates.Comment: 23 pages, 10 figures, correcting typing mistake in titl
    corecore