45 research outputs found
Assessing the risk of establishment and transient populations of Spodoptera frugiperda in Europe
The fall armyworm, Spodoptera frugiperda (J.E. Smith), is an invasive pest threatening crop production and food security worldwide. High concerns are linked to the potential establishment of the species in Europe. The high migratory capacity of S. frugiperda causes concerns about the potential impacts of transient populations invading new areas from suitable hotspots. In the present work, we developed and used a physiologically-based demographic model to quantitatively assess the risks of S. frugiperda in Europe. The risks were assessed considering a best-, a median-, and a worst-case scenario. The Mediterranean coastal areas of Southern Europe resulted particularly suitable for the establishment of the species, with suitable areas reaching even higher latitudes, in the worst-case scenario. In Europe, up to four generations per year were predicted. The predicted yearly average number of moths per trap per week (± standard deviation) was 5 (± 4), 17 (± 5), and 139 (± 22) in the best, median-, and worst-case assessment scenarios, respectively. Model results showed that Southern and Central Europe up to the 48th parallel north might be exposed to the risk of transient populations. Depending on the latitude and on the period of arrival of the propagule, 1–2 transient generations per year might be expected. The model can be used to define strategies for reducing the risks of establishment of the pest at the country level. Predictions on the dynamics and phenology of the pest can also be used to support its management at the local level
Risk assessment of pesticides and other stressors in bees: Principles, data gaps and perspectives from the European Food Safety Authority
Current approaches to risk assessment in bees do not take into account co-exposures from multiple stressors. The European Food Safety Authority (EFSA) is deploying resources and efforts to move towards a holistic risk assessment approach of multiple stressors in bees. This paper describes the general principles of pesticide risk assessment in bees, including recent developments at EFSA dealing with risk assessment of single and multiple pesticide residues and biological hazards. The EFSA Guidance Document on the risk assessment of plant protection products in bees highlights the need for the inclusion of an uncertainty analysis, other routes of exposures and multiple stressors such as chemical mixtures and biological agents. The EFSA risk assessment on the survival, spread and establishment of the small hive beetle, Aethina tumida, an invasive alien species, is provided with potential insights for other bee pests such as the Asian hornet, Vespa velutina. Furthermore, data gaps are identified at each step of the risk assessment, and recommendations are made for future research that could be supported under the framework of Horizon 2020. Finally, the recent work conducted at EFSA is presented, under the overarching MUST-B project ("EU efforts towards the development of a holistic approach for the risk assessment on MUltiple STressors in Bees") comprising a toolbox for harmonised data collection under field conditions and a mechanistic model to assess effects from pesticides and other stressors such as biological agents and beekeeping management practices, at the colony level and in a spatially complex landscape. Future perspectives at EFSA include the development of a data model to collate high quality data to calibrate and validate the model to be used as a regulatory tool. Finally, the evidence collected within the framework of MUST-B will support EFSA's activities on the development of a holistic approach to the risk assessment of multiple stressors in bees. In conclusion, EFSA calls for collaborative action at the EU level to establish a common and open access database to serve multiple purposes and different stakeholders
A Three-Step Neural Network Artificial Intelligence Modeling Approach for Time, Productivity and Costs Prediction: A Case Study in Italian Forestry
The improvement of harvesting methodologies plays an important role in the optimization of wood production in a context of sustainable forest management. Different harvesting methods can be applied according to forest site-specific condition and the appropriate mechanization level depends on a number of factors. Therefore, efficiency and functionality of wood harvesting operations depend on several factors. The aim of this study is to analyze how the different harvesting processes affect operational costs and labor productivity in typical small-scale Italian harvesting companies. A multiple linear regression model (MLR) and artificial neural network (ANN) have been carried out to predict gross time, productivity and costs estimation in a series of qualitative and quantitative variables. The results have created a correct statistical model able to accurately estimate the technical parameters (work time and productivity) and economic parameters (costs per unit of product and per hectare) useful to the forestry entrepreneur to predict the results of the work in advance, considering only the values detectable of some characteristic elements of the worksite
Predicting the spatio-temporal dynamics of Popillia japonica populations
We developed a reaction–diffusion model to describe the spatio-temporal dynamics of the Japanese beetle (Popillia japonica Newman), based on adult abundance data collected by the Regional Phytosanitary Service during the monitoring activities in the infested area in Lombardy (northern Italy), from 2015 to 2021. The model simulated the abundance of the pest, with a discrete time step of one year along linear trajectories departing from an initial point of establishment. The model allowed the determination of the rate of expansion (i.e. the speed at which the leading edge of a population wave moves over time) of the pest along 13 different trajectories, ranging from 4.5 to 13.8 km/y, with a mean value of 8.2 km/y. Finally, we developed a land suitability index that summarises the effect of land use on the trajectory-specific rate of expansion of P. japonica.
Specifically, the model revealed an increase in the rate of expansion of 260 m per year for each additional percentage point in the land suitability index. The model presented and the knowledge acquired in this work represent an important step forward in the comprehension of P. japonica population dynamics, and they represent important elements for the development of a decision support tool for pest risk managers to design and implement scientifically driven management actions
A model for predicting the phenology of Philaenus spumarius
The design and implementation of Philaenus spumarius control strategies can take advantage of properly calibrated models describing and predicting the phenology of vector populations in agroecosystems. We developed a temperature-driven physiological-based model based on the system of Kolmogorov partial differential equations to predict the phenological dynamics of P. spumarius. The model considers the initial physiological age distribution of eggs, the diapause termination process, and the development rate functions of post-diapausing eggs and nymphal stages, estimated from data collected in laboratory experiments and field surveys in Italy. The temperature threshold and cumulative degree days for egg diapause termination were estimated as 6.5 °C and 120 DD, respectively. Preimaginal development rate functions exhibited lower thresholds ranging between 2.1 and 5.0 °C, optimal temperatures between 26.6 and 28.3 °C, and upper threshold between 33.0 and 35 °C. The model correctly simulates the emergence of the 3rd, 4th, and 5th nymphal instars, key stages to target monitoring actions and control measures against P. spumarius. Precision in simulating the phenology of the 1st and 2nd nymphal stages was less satisfactory. The model is a useful rational decision tool to support scheduling monitoring and control actions against the late and most important nymphal stages of P. spumarius
Simulazione della diapausa e della fenologia del coleottero Giapponese, Popillia japonica
Il coleottero giapponese (Popillia japonica Newman) è una specie polifaga e invasiva originaria del nord-est asiatico. Fin dalla sua prima individuazione negli Stati Uniti nel 1916, la specie è stata in grado di invadere vaste aree del nord America ed alcune aree del Canada meridionale. Negli anni '70, la P. japonica è stata introdotta nelle Azzorre e dal 2014 la specie si è insediata in Europa continentale (Italia). Dal 2017, in Svizzera sono stati segnalati alcuni avvistamenti della specie. In Italia, la P. japonica è distribuita lungo la Valle del Ticino al confine tra Lombardia e Piemonte e, dalla sua prima individuazione, l’area di infestazione è incrementata nel tempo. La specie è considerata un organismo da quarantena e quindi il Servizio Fitosanitario Nazionale Italiano e i due Servizi Fitosanitari Regionali stanno attuando misure volte al monitoraggio e al contenimento di P. japonica. Il controllo delle popolazioni di P. japonica può essere supportato dall’uso di modelli in grado di predire le tempistiche di emergenza degli stadi vitali suscettibili (ad esempio, larve e adulti). In questo lavoro, presentiamo un modello meccanicistico per simulare l’influenza della temperatura sull’inizio dei voli e sulla curva fenologica degli adulti di P. japonica. Il modello è stato calibrato e validato utilizzando serie temporali relative alla cattura di individui adulti tramite trappole a feromoni. I dati sono stati raccolti dal Servizio Fitosanitario della Regione Lombardia (Italia). Il modello è in grado di simulare realisticamente l’influenza della temperatura del suolo sui pattern di sviluppo e sulle strategie dei cicli di vita della specie. L’applicazione del modello a scala locale (ad esempio, simulazioni a livello puntuale) possono supportare i decisori (agricoltori, cooperative agricole ecc.) nella pianificazione e implementazione di azioni volte al monitoraggio e al controllo delle popolazioni basate sulle tempistiche di emergenza stimate dal modello. Il modello può essere inoltre applicato su scala regionale per ottenere mappe fenologiche che permettano di identificare le aree dove è prevista una emergenza anticipata della specie. Questa informazione può supportare i decisori che agiscono a livello regionale (ad esempio Servizi Fitosanitari Regionali) nella prioritizzazione delle aree di intervento, nell’implementazione di sistemi di allerta e nell’implementazione di piani di gestione della specie su scala regionale. Finanziamento: Il Progetto GESPO è Finanziato da “Direzione Generale Agricoltura - Regione Lombardia - D.d.s. 28 marzo 2018 - n. 4403D.g.r. n. X/7353 14 novembre 2017”
Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world
Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic.
Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality.
Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States.
Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis.
Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
Modelli a supporto delle decisioni per la gestione dei parassiti. Il ruolo delle scale e dei contesti di applicazione
Gli artropodi parassiti rappresentano una delle principali minacce a livello globale a causa del loro impatto sulla produzione agricola e forestale e per gli effetti sulla salute degli animali, dell\u2019uomo e dell\u2019ambiente. In particolare, i parassiti delle piante influenzano le pratiche di gestione e lo sviluppo di tecnologie per assicurare la produzione alimentare. Con l\u2019incremento della popolazione umana e del conseguente incremento della richiesta di cibo, un\u2019importante sfida del futuro sar\ue0 quella di assicurare la sicurezza e la disponibilit\ue0 di risorse alimentari. Ridurre le perdite colturali causate dai parassiti e i costi diretti e indiretti legati alla loro gestione \ue8 un aspetto fondamentale per assicurare la sicurezza alimentare globale. La pianificazione e l\u2019implementazione di decisioni razionali e scientificamente valide per la gestione dei parassiti possono essere supportate dall\u2019uso dei modelli. In particolare, i modelli a base fisiologica rappresentano utili strumenti in grado di fornire informazioni quantitative a supporto della loro gestione.
Nel presente lavoro, viene fornita una descrizione generale relativa allo sviluppo e all\u2019applicazione di modelli per la gestione dei parassiti, ponendo l\u2019accento sui modelli a base fisiologica e sulla loro applicazione a diversi contesti e su varie scale spaziali (dalla gestione locale a quella territoriale) e temporali (gestione a breve e a lungo termine).
Nel Capitolo Uno si descrivono gli impatti legati agli artropodi parassiti e si presentano i requisiti da rispettare per lo sviluppo di un modello applicato alla gestione dei parassiti, tenendo conto della scala spazio-temporale e del contesto di applicazione. Si discutono, inoltre, i diversi approcci modellistici applicati allo studio dell\u2019ecologia dei parassiti e l\u2019importanza di rappresentare in maniera realistica il sistema biologico investigato. Nel Capitolo Due si fornisce una revisione dello stato dell\u2019arte legato all\u2019uso di modelli per il supporto alla gestione integrata dei parassiti (Integrated Pest Management). Si discutono i diversi approcci, i campi di applicazione, i benefici ed i fattori che influenzano l\u2019adozione di tali modelli per il supporto alle decisioni. Nel Capitolo Tre, viene presentato un modello a base fisiologica per prevedere la fenologia multi-annuale del coleottero Giapponese (Popillia japonica). Viene introdotto nel modello una descrizione realistica del processo di svernamento della specie e si discutono le conseguenze sulle tempistiche di emergenza predette per i diversi stadi di sviluppo. Nel Capitolo Quattro, viene presentato un modello a base fisiologica per la simulazione della dinamica di popolazione di Spodoptera frugiperda. Si discutono le implicazioni modellistiche legate all\u2019introduzione di un termine densit\ue0-dipendente per la descrizione degli effetti della competizione intra-specifica e inter-specifica sulla dinamica della specie. Nel Capitolo Cinque, viene presentato un modello a base fisiologica per simulare la distribuzione, l\u2019abbondanza e l\u2019attivit\ue0 della mosca mediterranea della frutta (Ceratitis capitata) in Europa, considerando diversi scenari climatici. In particolare, viene discussa l\u2019importanza di descrivere le relazioni non-lineari esistenti tra le forzanti ambientali e le risposte a livello individuale e di popolazione. Nel Capitolo Sei viene fornito un breve riassunto dei risultati principali dei modelli presentati con riferimento alla loro applicazione per la stima e la gestione dei rischi legati ai parassiti in diversi contesti e scale di applicazione. Si discute, inoltre, il potenziale uso di tali modelli per rispondere alle sfide globali che saremo chiamati ad affrontare nel prossimo futuro.Arthropod pests represent one of the major threats worldwide as they have an impact on agricultural and forestry production, and on the health of animals, humans and the environment. In particular, plant pests will play a prominent role in shaping the management practices and the technologies to be adopted in food production. With an increasing growth of human population and the consequent increase in food demand, a major challenge of the future will be to ensure safe and secure food. Decreasing crop losses due to pests and reducing both the direct and indirect costs linked to pest management is a fundamental aspect for ensuring global food security. The design and the implementation of rational and scientifically sound decisions in pest management can be supported by the use of models. In particular, physiologically-based models have proven to be useful tools able to provide quantitative information supporting decision-makers in the management of pests.
In this work, I present a general overview on the development and the application of models for pest management with particular emphasis on physiologically-based models applied at different contexts and at different spatial (from local to area-wide management) and temporal (from short to long term management) scales.
In Chapter One I present an overview on the impacts of arthropod pests and the requirements to be satisfied when developing a model for pest management considering the spatio-temporal scale and the context of application. I discuss the different modelling approaches applied to pest ecology and the importance to realistically represent the biological system under investigation. In Chapter Two I review the current state of the art on the development and the use of models supporting Integrated Pest Management. I discuss the modelling approaches, the fields of application, the benefits and the drivers influencing their adoption as tools for decision-making in crop protection. In Chapter Three I present a physiologically-based model predicting the multi-annual phenology of the Japanese beetle (Popillia japonica). In particular, is introduced a realistic description of the overwintering process of the species and discussed the consequences on the predicted timing of emergence of the different life-stages. In Chapter Four I present a physiologically-based model simulating the population dynamics of the fall armyworm (Spodoptera frugiperda). I discuss the implications linked to the introduction of a density-dependent control factor for the realistic simulation of intra-specific and inter-specific competition and the influence on the predicted dynamics of the species. In Chapter Five I present a physiologically-based model simulating the potential distribution, abundance and activity of the Mediterranean fruitfly (Ceratitis capitata) in Europe under current and future climatic scenarios. In particular, I discuss the importance of capturing the non-linear relation between environmental drivers and the species\u2019 physiological responses as well as the consequences at the individual and at the population level. In Chapter Six I briefly summarise the main results of the models presented and discuss their application for the assessment and the management of the risks linked to pests in different spatio-temporal scales and contexts of application. I also discuss how models for pest management might support decision-making in relation to the future global challenges we are called to face in the near future
Multi-dimensional modelling tools supporting decision-making for the beekeeping sector
Honey bee colonies are fundamental for the provision of goods and ecosystem services. Honey bees are highly influenced by environmental conditions and quality, beekeepers’ management practices, socio-economic conditions and policies adopted for cropping and land use. We propose a modelling framework aiming at assessing the bee health status and forecast colony outputs. Two modelling tools are here presented: (i) a Health Status Index (HSI) exploring the consequences of abiotic, biotic drivers and beekeeping actions on bee health; and (ii) predictive models for the estimation of honey production and the provision of pollination service considering abiotic, biotic drivers and HSI. The models proposed represent useful tools for science-based decision support for beekeepers, risk managers and policy-makers