36 research outputs found

    A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing

    Get PDF
    Alternative splicing generates multiple transcript and protein isoforms from the same gene and thus is important in gene expression regulation. To date, RNA-sequencing (RNA-seq) is the standard method for quantifying changes in alternative splicing on a genome-wide scale. Understanding the current limitations of RNA-seq is crucial for reliable analysis and the lack of high quality, comprehensive transcriptomes for most species, including model organisms such as Arabidopsis, is a major constraint in accurate quantification of transcript isoforms. To address this, we designed a novel pipeline with stringent filters and assembled a comprehensive Reference Transcript Dataset for Arabidopsis (AtRTD2) containing 82,190 non-redundant transcripts from 34 212 genes. Extensive experimental validation showed that AtRTD2 and its modified version, AtRTD2-QUASI, for use in Quantification of Alternatively Spliced Isoforms, outperform other available transcriptomes in RNA-seq analysis. This strategy can be implemented in other species to build a pipeline for transcript-level expression and alternative splicing analyses

    MICE: The muon ionization cooling experiment. Step I: First measurement of emittance with particle physics detectors

    Get PDF
    Copyright @ 2011 APSThe Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) detectors was performed. The analysis of these data was recently completed and is discussed in this paper. Future steps for MICE, where beam emittance and emittance reduction (cooling) are to be measured with greater accuracy, are also presented.This work was supported by NSF grant PHY-0842798

    Revised Morning Loops of the Arabidopsis Circadian Clock Based on Analyses of Direct Regulatory Interactions

    Get PDF
    The network structure of the plant circadian clock is complex and direct regulatory interactions between individual components have proven particularly difficult to predict from genetic analyses. Here, we systematically investigate in vivo binding interactions between the morning-specific transcription factor, LATE ELONGATED HYPOCOTYL (LHY) and the promoters of other components of the network. We then demonstrate the functionality of these interactions by testing the responsiveness of the target gene to an ethanol-induced change in expression level of the LHY protein. We uncover novel, negative autoregulatory feedback loops from LHY and the closely related CIRCADIAN CLOCK ASSOCIATED-1 (CCA1) onto their own and each other’s expression. Furthermore we show that LHY acts as a repressor of all other clock components, including PSEUDO-RESPONSE REGULATORs (PRRs) 9 and 7, which were previously thought to be positive regulatory targets. These experimental results lead to a substantial revision of the morning loops of the clock
    corecore