16 research outputs found

    In vivo and in vitro studies of the proto-oncogene Evi1

    Get PDF

    In vivo and in vitro studies of the proto-oncogene Evi1

    Get PDF

    In vivo and in vitro Studies of the Proto-oncogene Evil

    Get PDF
    Ecotropic viral integration site 1 (Evi1) is a zinc finger containing nuclear protein, which is involved in transcriptional control. Although Evi1 expression during normal embryonic development is essential for survival, the level of expression appears less necessary in the later stages of development. Inappropriate “re-expression” of Evi1 in patient’s hematopoietic precursor cells due to chromosomal abnormalities has been found to be a contributing factor in the development and progression of malignancies such as myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML)

    SETDB1 prevents TET2-dependent activation of IAP retroelements in naïve embryonic stem cells

    Get PDF
    Background Endogenous retroviruses (ERVs), which are responsible for 10% of spontaneous mouse mutations, are kept under control via several epigenetic mechanisms. The H3K9 histone methyltransferase SETDB1 is essential for ERV repression in embryonic stem cells (ESCs), with DNA methylation also playing an important role. It has been suggested that SETDB1 protects ERVs from TET-dependent DNA demethylation, but the relevance of this mechanism for ERV expression remains unclear. Moreover, previous studies have been performed in primed ESCs, which are not epigenetically or transcriptionally representative of preimplantation embryos. Results We use naïve ESCs to investigate the role of SETDB1 in ERV regulation and its relationship with TET-mediated DNA demethylation. Naïve ESCs show an increased dependency on SETDB1 for ERV silencing when compared to primed ESCs, including at the highly mutagenic intracisternal A particles (IAPs). We find that in the absence of SETDB1, TET2 activates IAP elements in a catalytic-dependent manner. Surprisingly, TET2 does not drive changes in DNA methylation levels at IAPs, suggesting that it regulates these retrotransposons indirectly. Instead, SETDB1 depletion leads to a TET2-dependent loss of H4R3me2s, which is indispensable for IAP silencing during epigenetic reprogramming. Conclusions Our results demonstrate a novel and unexpected role for SETDB1 in protecting IAPs from TET2-dependent histone arginine demethylation

    Compensation between CSF1R+ macrophages and Foxp3+ Treg cells drives resistance to tumor immunotherapy

    Get PDF
    Redundancy and compensation provide robustness to biological systems but may contribute to therapy resistance. Both tumor-associated macrophages (TAMs) and Foxp3+ regulatory T (Treg) cells promote tumor progression by limiting antitumor immunity. Here we show that genetic ablation of CSF1 in colorectal cancer cells reduces the influx of immunosuppressive CSF1R+ TAMs within tumors. This reduction in CSF1-dependent TAMs resulted in increased CD8+ T cell attack on tumors, but its effect on tumor growth was limited by a compensatory increase in Foxp3+ Treg cells. Similarly, disruption of Treg cell activity through their experimental ablation produced moderate effects on tumor growth and was associated with elevated numbers of CSF1R+ TAMs. Importantly, codepletion of CSF1R+ TAMs and Foxp3+ Treg cells resulted in an increased influx of CD8+ T cells, augmentation of their function, and a synergistic reduction in tumor growth. Further, inhibition of Treg cell activity either through systemic pharmacological blockade of PI3Kdelta, or its genetic inactivation within Foxp3+ Treg cells, sensitized previously unresponsive solid tumors to CSF1R+ TAM depletion and enhanced the effect of CSF1R blockade. These findings identify CSF1R+ TAMs and PI3Kdelta-driven Foxp3+ Treg cells as the dominant compensatory cellular components of the immunosuppressive tumor microenvironment, with implications for the design of combinatorial immunotherapies

    Genome-Wide Analysis of Transcriptional Reprogramming in Mouse Models of Acute Myeloid Leukaemia

    Get PDF
    Acute leukaemias are commonly caused by mutations that corrupt the transcriptional circuitry of haematopoietic stem/progenitor cells. However, the mechanisms underlying large-scale transcriptional reprogramming remain largely unknown. Here we investigated transcriptional reprogramming at genome-scale in mouse retroviral transplant models of acute myeloid leukaemia (AML) using both gene-expression profiling and ChIP-sequencing. We identified several thousand candidate regulatory regions with altered levels of histone acetylation that were characterised by differential distribution of consensus motifs for key haematopoietic transcription factors including Gata2, Gfi1 and Sfpi1/Pu.1. In particular, downregulation of Gata2 expression was mirrored by abundant GATA motifs in regions of reduced histone acetylation suggesting an important role in leukaemogenic transcriptional reprogramming. Forced re-expression of Gata2 was not compatible with sustained growth of leukaemic cells thus suggesting a previously unrecognised role for Gata2 in downregulation during the development of AML. Additionally, large scale human AML datasets revealed significantly higher expression of GATA2 in CD34+ cells from healthy controls compared with AML blast cells. The integrated genome-scale analysis applied in this study represents a valuable and widely applicable approach to study the transcriptional control of both normal and aberrant haematopoiesis and to identify critical factors responsible for transcriptional reprogramming in human cancer

    Somatic heterozygous mutations in ETV6 (TEL) and frequent absence of ETV6 protein in acute myeloid leukemia

    No full text
    ETV6 (ets translocation variant gene 6) TEL (translocation ets leukemia), encoding a transcriptional repressor, is involved in various translocations associated with human malignancies. Strikingly, the nonrearranged ETV6 allele is often deleted or inactivated in cells harboring these translocations. Although ETV6 translocations are infrequent in acute myeloid leukemia (AML), mutations or deregulated expression of ETV6 may contribute to leukemogenesis. To investigate the involvement of ETV6 in AML, we analysed 300 newly diagnosed patients for mutations in the coding region of the gene. Furthermore, we studied protein expression in 77 patients using two ETV6-specific antibodies. Five somatic heterozygous mutations were detected, which affected either the homodimerization- or the DNA-binding domain of ETV6. The proteins translated from the cDNAs of these mutants were unable to repress transcription and showed dominant-negative effects. In addition, we demonstrate that one-third of AML patients have deficient ETV6 protein expression, which is not related to ETV6 mRNA expression levels. In conclusion, we demonstrate that ETV6 abnormalities are not restricted to translocations and occur more frequently in AML than previously thought. Additional comprehensive studies are required to define the clinical consequence of ETV6 loss of function in AML

    ERG promotes T-acute lymphoblastic leukemia and is transcriptionally regulated in leukemic cells by a stem cell enhancer

    No full text
    The Ets-related gene (ERG) is an Ets-transcription factor required for normal blood stem cell development. ERG expression is down-regulated during early T-lymphopoiesis but maintained in T-acute lymphoblastic leukemia (T-ALL), where it is recognized as an independent risk factor for adverse outcome. However, it is unclear whether ERG is directly involved in the pathogenesis of T-ALL and how its expression is regulated. Here we demonstrate that transgenic expression of ERG causes T-ALL in mice and that its knockdown reduces the proliferation of human MOLT4 T-ALL cells. We further demonstrate that ERG expression in primary human T-ALL cells is mediated by the binding of other T-cell oncogenes SCL/TAL1, LMO2, and LYL1 in concert with ERG, FLI1, and GATA3 to the ERG +85 enhancer. This enhancer is not active in normal T cells but in transgenic mice targets expression to fetal liver c-kit(+) cells, adult bone marrow stem/progenitors and early CD4(-)CD8(-) double-negative thymic progenitors. Taken together, these data illustrate that ERG promotes T-ALL and that failure to extinguish activity of stem cell enhancers associated with regulatory transcription factors such as ERG can contribute to the development of leukemia
    corecore