16 research outputs found

    Partial Deletion of Chromosome 8 β-defensin Cluster Confers Sperm Dysfunction and Infertility in Male Mice

    Get PDF
    β-defensin peptides are a family of antimicrobial peptides present at mucosal surfaces, with the main site of expression under normal conditions in the male reproductive tract. Although they kill microbes in vitro and interact with immune cells, the precise role of these genes in vivo remains uncertain. We show here that homozygous deletion of a cluster of nine β-defensin genes (DefbΔ9) in the mouse results in male sterility. The sperm derived from the mutants have reduced motility and increased fragility. Epididymal sperm isolated from the cauda should require capacitation to induce the acrosome reaction but sperm from the mutants demonstrate precocious capacitation and increased spontaneous acrosome reaction compared to wild-types but have reduced ability to bind the zona pellucida of oocytes. Ultrastructural examination reveals a defect in microtubule structure of the axoneme with increased disintegration in mutant derived sperm present in the epididymis cauda region, but not in caput region or testes. Consistent with premature acrosome reaction, sperm from mutant animals have significantly increased intracellular calcium content. Thus we demonstrate in vivo that β-defensins are essential for successful sperm maturation, and their disruption leads to alteration in intracellular calcium, inappropriate spontaneous acrosome reaction and profound male infertility

    Structure-Activity Determinants in Antifungal Plant Defensins MsDef1 and MtDef4 with Different Modes of Action against Fusarium graminearum

    Get PDF
    Plant defensins are small cysteine-rich antimicrobial proteins. Their three-dimensional structures are similar in that they consist of an α-helix and three anti-parallel β-strands stabilized by four disulfide bonds. Plant defensins MsDef1 and MtDef4 are potent inhibitors of the growth of several filamentous fungi including Fusarium graminearum. However, they differ markedly in their antifungal properties as well as modes of antifungal action. MsDef1 induces prolific hyperbranching of fungal hyphae, whereas MtDef4 does not. Both defensins contain a highly conserved γ-core motif (GXCX3–9C), a hallmark signature present in the disulfide-stabilized antimicrobial peptides, composed of β2 and β3 strands and the interposed loop. The γ-core motifs of these two defensins differ significantly in their primary amino acid sequences and in their net charge. In this study, we have found that the major determinants of the antifungal activity and morphogenicity of these defensins reside in their γ-core motifs. The MsDef1-γ4 variant in which the γ-core motif of MsDef1 was replaced by that of MtDef4 was almost as potent as MtDef4 and also failed to induce hyperbranching of fungal hyphae. Importantly, the γ-core motif of MtDef4 alone was capable of inhibiting fungal growth, but that of MsDef1 was not. The analysis of synthetic γ-core variants of MtDef4 indicated that the cationic and hydrophobic amino acids were important for antifungal activity. Both MsDef1 and MtDef4 induced plasma membrane permeabilization; however, kinetic studies revealed that MtDef4 was more efficient in permeabilizing fungal plasma membrane than MsDef1. Furthermore, the in vitro antifungal activity of MsDef1, MsDef1-γ4, MtDef4 and peptides derived from the γ-core motif of each defensin was not solely dependent on their ability to permeabilize the fungal plasma membrane. The data reported here indicate that the γ-core motif defines the unique antifungal properties of each defensin and may facilitate de novo design of more potent antifungal peptides

    Plant antimicrobial peptides

    Get PDF

    Actin acting at the Golgi

    Get PDF
    The organization, assembly and remodeling of the actin cytoskeleton provide force and tracks for a variety of (endo)membrane-associated events such as membrane trafcking. This review illustrates in different cellular models how actin and many of its numerous binding and regulatory proteins (actin and co-workers) participate in the structural organization of the Golgi apparatus and in traf- cking-associated processes such as sorting, biogenesis and motion of Golgi-derived transport carriers

    Highly parallel genome variant engineering with CRISPR–Cas9

    No full text
    Understanding the functional effects of DNA sequence variants is of critical importance for studies of basic biology, evolution, and medical genetics; however, measuring these effects in a high-throughput manner is a major challenge. One promising avenue is precise editing with the CRISPR-Cas9 system, which allows for generation of DNA double-strand breaks (DSBs) at genomic sites matching the targeting sequence of a guide RNA (gRNA). Recent studies have used CRISPR libraries to generate many frameshift mutations genome wide through faulty repair of CRISPR-directed breaks by nonhomologous end joining (NHEJ) 1 . Here, we developed a CRISPR-library-based approach for highly efficient and precise genome-wide variant engineering. We used our method to examine the functional consequences of premature-termination codons (PTCs) at different locations within all annotated essential genes in yeast. We found that most PTCs were highly deleterious unless they occurred close to the 3' end of the gene and did not affect an annotated protein domain. Unexpectedly, we discovered that some putatively essential genes are dispensable, whereas others have large dispensable regions. This approach can be used to profile the effects of large classes of variants in a high-throughput manner

    A defensin from tomato with dual function in defense and development

    No full text
    Defensins are antimicrobial peptides that are part of the innate immune system, contributing to the first line of defense against invading pathogens. Defensins and defensin-like peptides are functionally diverse, disrupting microbial membranes and acting as ligands for cellular recognition and signaling. Here we show that the tomato defensin DEF2 is expressed during early flower development. Defensin mRNA abundance, peptide expression and processing are differentially regulated in developing flowers. Antisense suppression or constitutive overexpression of DEF2 reduces pollen viability and seed production. Furthermore, overexpression of DEF2 pleiotropically alters the growth of various organs and enhances foliar resistance to the fungal pathogen Botrytis cinerea. Partially purified extracts from leaves of a DEF2-overexpressing line inhibited tip growth of B. cinerea. Besides providing insights into regulation of defensin expression, these data demonstrate that plant defensins, like their animal counterparts, can assume multiple functions related to defense and development.Peer reviewe
    corecore