174 research outputs found

    Campylobacter jejuni Cas9 Modulates the Transcriptome in Caco-2 Intestinal Epithelial Cells

    Get PDF
    The zoonotic human pathogen Campylobacter jejuni is known for its ability to induce DNA-damage and cell death pathology in humans. The molecular mechanism behind this phenomenon involves nuclear translocation by Cas9, a nuclease in C. jejuni (CjeCas9) that is the molecular marker of the Type II CRISPR-Cas system. However, it is unknown via which cellular pathways CjeCas9 drives human intestinal epithelial cells into cell death. Here, we show that CjeCas9 released by C. jejuni during the infection of Caco-2 human intestinal epithelial cells directly modulates Caco-2 transcriptomes during the first four hours of infection. Specifically, our results reveal that CjeCas9 activates DNA damage (p53, ATM (Ataxia Telangiectasia Mutated Protein)), pro-inflammatory (NF-ÎşB (Nuclear factor-ÎşB)) signaling and cell death pathways, driving Caco-2 cell

    Gene expression analysis of peripheral cells for subclassification of pediatric inflammatory bowel disease in remission

    Get PDF
    Objective: In current clinical practice, optimal treatment of inflammatory bowel disease (IBD) aims at the induction and maintenance of clinical remission. Clinical remission is apparent when laboratory markers of inflammation are normal and clinical symptoms are absent. However, sub-clinical inflammation can still be present. A detailed analysis of the immune status during this inactive state of disease may provide a useful tool to categorize patients with clinical remission into subsets with variable states of immune activation. Design: By using Affymetrix GeneChips, we analysed RNA gene expression profiles of peripheral blood leukocytes from pediatric IBD patients in clinical remission and controls. We performed (un)supervised clustering analysis of IBD-associated genes and applied Ingenuity® pathway software to identify specific molecular profiles between patients. Results: Pediatric IBD patients with disease in clinical remission display heterogeneously distributed gene expression profiles that are significantly distinct from controls. We identified three clusters of IBD patients, each displaying specific expression profiles of IBD-associated genes. Conclusion: The expression of immune- and IBD-associated genes in peripheral blood leukocytes from pediatric IBD patients in clinical remission was different from healthy controls, indicating that sub-clinical immune mechanisms are still active during remission. As such, RNA profiling of peripheral blood may allow for non-invasive patient subclassification and new perspectives in treatment regimes of IBD patients in the future

    Enabling analytics on sensitive medical data with secure multi-party computation

    Get PDF
    While there is a clear need to apply data analytics in the healthcare sector, this is often difficult because it requires combining sensitive data from multiple data sources. In this paper, we show how the cryptographic technique of secure multiparty computation can enable such data analytics by performing analytics without the need to share the underlying data. We discuss the issue of compliance to European privacy legislation; report on three pilots bringing these techniques closer to practice; and discuss the main challenges ahead to make fully privacy-preserving data analytics in the medical sector commonplace

    Difference in signalling between various hormone therapies in endometrium, myometrium and upper part of the vagina

    Get PDF
    BACKGROUND: Combined hormone treatments in post-menopausal women have different clinical responses on uterus and vagina; therefore, we investigated differences in steroid signalling between various hormone therapies in these tissues. METHODS: A total of 30 post-menopausal women scheduled for hysterectomy were distributed into four subgroups: control-group (n = 9), Tibolone-group (n = 8); estradiol (E(2))-group (n = 7); E(2) + medroxyprogesterone acetate (MPA)-group (n = 6). Medication was administered orally every day for 21 days prior to removal of uterus and upper part of the vagina. Tissue RNA was isolated, and gene expression profiles were generated using GeneChip technology and analysed by cluster analysis and significance analysis of microarrays. Apoptosis and cell proliferation assays, as well as immunohistochemistry for hormone receptors were performed. RESULTS: 21-days of treatment with E(2), E(2) + MPA or tibolone imposes clear differential gene expression profiles on endometrium and myometrium. Treatment with E(2) only results in the most pronounced effect on gene expression (up to 1493 genes differentially expressed), proliferation and apoptosis. Tibolone, potentially metabolized to both estrogenic and progestagenic metabolites, shows some resemblance to E(2) signalling in the endometrium and, in contrast, shows significant resemblance to E(2) + MPA signalling in the myometrium. In the vagina the situation is entirely different; all three hormonal treatments result in regulation of a small number (4-73) of genes, in comparison to signalling in endometrium and myometrium. CONCLUSION: Endometrium and myometrium differentially respond to the hormone therapies and use complet

    The tissue-specific aspect of genome-wide DNA methylation in newborn and placental tissues: Implications for epigenetic epidemiologic studies

    Get PDF
    Epigenetic programming is essential for lineage differentiation, embryogenesis and placentation in early pregnancy. In epigenetic association studies, DNA methylation is often examined in DNA derived from white blood cells, although its validity to other tissues of interest remains questionable. Therefore, we investigated the tissue specificity of epigenome-wide DNA methylation in newborn and placental tissues. Umbilical cord white blood cells (UC-WBC, n = 25), umbilical cord blood mononuclear cells (UC-MNC, n = 10), human umbilical vein endothelial cells (HUVEC, n = 25) and placental tissue (n = 25) were obtained from 36 uncomplicated pregnancies. Genome-wide DNA methylation was measured by the Illumina HumanMethylation450K BeadChip. Using UC-WBC as a reference tissue, we identified 3595 HUVEC tissue-specific differentially methylated regions (tDMRs) and 11,938 placental tDMRs. Functional enrichment analysis showed that HUVEC and placental tDMRs were involved in embryogenesis, vascular development and regulation of gene expression. No tDMRs were identified in UC-MNC. In conclusion, the extensive amount of genome-wide HUVEC and placental tDMRs underlines the relevance of tissue-specific approaches in future epigenetic association studies, or the use of validated representative tissues for a certain disease of interest, if available. To this purpose, we herewith provide a relevant dataset of paired, tissue-specific, genome-wide methylation measurements in newborn tissues

    Expanded national database collection and data coverage in the FINDbase worldwide database for clinically relevant genomic variation allele frequencies

    Get PDF
    FINDbase (http://www.findbase.org) is a comprehensive data repository that records the prevalence of clinically relevant genomic variants in various populations worldwide, such as pathogenic variants leadingmostly tomonogenic disorders and pharmacogenomics biomarkers. The database also records the incidence of rare genetic diseases in various populations, all in well-distinct data modules. Here, we report extensive data content updates in all data modules, with direct implications to clinical pharmacogenomics. Also, we report significant new developments in FINDbase, namely (i) the release of a new version of the ETHNOS software that catalyzes development curation of national/ethnic genetic databases, (ii) the migration of all FINDbase data content into 90 distinct national/ethnicmutation databases, all built around Microsoft's PivotViewer (http://www.getpivot.com) software (iii) new data visualization tools and (iv) the interrelation of FINDbase with DruGeVar database with direct implications in clinical pharmacogenomics. The abovementioned updates further enhance the impact of FIND-base, as a key resource for Genomic Medicine applications

    Rapid Low-Cost Microarray-Based Genotyping for Genetic Screening in Primary Immunodeficiency

    Get PDF
    Background: Genetic tests for primary immunodeficiency disorders (PIDs) are expensive, time-consuming, and not easily accessible in developing countries. Therefore, we studied the feasibility of a customized single nucleotide variant (SNV) microarray that we developed to detect disease-causing variants and copy number variation (CNV) in patients with PIDs for only 40 Euros. Methods: Probes were custom-designed to genotype 9,415 variants of 277 PID-related genes, and were added to the genome-wide Illumina Global Screening Array (GSA). Data analysis of GSA was performed using Illumina GenomeStudio 2.0, Biodiscovery Nexus 10.0, and R-3.4.4 software. Validation of genotype calling was performed by comparing the GSA with whole-genome sequencing (WGS) data of 56 non-PID controls. DNA samples of 95 clinically diagnosed PID patients, of which 60 patients (63%) had a genetically established diagnosis (by Next-Generation Sequencing (NGS) PID panels or Sanger sequencing), w

    Endocrine disorders are prominent clinical features in patients with primary antibody deficiencies

    Get PDF
    Background: Primary antibody deficiencies (PADs) and anterior pituitary dysfunction are both rare conditions. However, recent studies have remarkably reported the occurrence of anterior pituitary dysfunction in PAD patients. Methods: In this cross-sectional, single-center study we evaluated the prevalence of endocrine disorders in adult PAD patients. Our study focused on common variable immunodeficiency (CVID), immunoglobulin G (IgG) subclass deficiency (IgGSD), and specific anti-polysaccharide antibody deficiency (SPAD). We assessed hormone levels, performed provocative tests and genetic testing in a subset of patients by direct sequencing of the nuclear factor kappa beta subunit 2 (NFKB2) gene and primary immunodeficiency (PID) gene panel testing by whole exome sequencing (WES). Results: Our results demonstrated that one out of 24 IgGSD/SPAD patients had secondary hypothyroidism and three out of 9 men with IgGSD/SPAD had secondary hypogonadism. Premature ovarian failure was observed in four out of 9 women with CVID and primary testicular failure in one out of 15 men with CVID. In two out of 26 CVID patients we found partial adrenal insufficiency (AI) and in one out of 18 patients with IgGSD/SPAD secondary AI was found. Moreover, in one out of 23 patients with CVID and in two out of 17 patients with IgGSD/SPAD severe growth hormone deficiency (GHD) was found, while one patient with IgGSD/SPAD showed mild GHD. Combined endocrine disorders were detected in two women with CVID (either partial secondary AI or autoimmune thyroiditis with primary hypogonadism) and in three men with IgGSD/SPAD (two with either mild GHD or secondary hypothyroidism combined with secondary hypogonadism, and one man with secondary AI and severe GHD). Genetic testing in a subset of patients did not reveal pathogenic variants in NFKB2 or other known PID-associated genes. Conclusion: This is the first study to describe a high prevalence of both anterior pituitary and end-organ endocrine dysfunction in adult PAD patients. As these endocrine disorders may cause considerable health burden, assessment of endocrine axes should be considered in PAD patients

    Fusion transcripts and their genomic breakpoints in polyadenylated and ribosomal RNA-minus RNA sequencing data

    Get PDF
    BACKGROUND: Fusion genes are typically identified by RNA sequencing (RNA-seq) without elucidating the causal genomic breakpoints. However, non–poly(A)-enriched RNA-seq contains large proportions of intronic reads that also span genomic breakpoints. RESULTS: We have developed an algorithm, Dr. Disco, that searches for fusion transcripts by taking an entire reference genome into account as search space. This includes exons but also introns, intergenic regions, and sequences that do not meet splice junction motifs. Using 1,275 RNA-seq samples, we investigated to what extent genomic breakpoints can be extracted from RNA-seq data and their implications regarding poly(A)-enriched and ribosomal RNA–minus RNA-seq data. Comparison with whole-genome sequencing data revealed that most genomic breakpoints are not, or minimally, transcribed while, in contrast, the genomic breakpoints of all 32 TMPRSS2-ERG–positive tumours were present at RNA level. We also revealed tumours in which the ERG breakpoint was located before ERG, which co-existed with additional deletions and messenger RNA that incorporated intergenic cryptic exons. In breast cancer we identified rearrangement hot spots near CCND1 and in glioma near CDK4 and MDM2 and could directly associate this with increased expression. Furthermore, in all datasets we find fusions to intergenic regions, often spanning multiple cryptic exons that potentially encode neo-antigens. Thus, fusion transcripts other than classical gene-to-gene fusions are prominently present and can be identified using RNA-seq. CONCLUSION: By using the full potential of non–poly(A)-enriched RNA-seq data, sophisticated analysis can reliably identify expressed genomic breakpoints and their transcriptional effects
    • …
    corecore