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2 Fusion transcripts and genomic breakpoints

Abstract

Background: Fusion genes are typically identified by RNA sequencing (RNA-seq) without elucidating the causal genomic
breakpoints. However, non–poly(A)-enriched RNA-seq contains large proportions of intronic reads that also span genomic
breakpoints.
Results: We have developed an algorithm, Dr. Disco, that searches for fusion transcripts by taking an entire reference
genome into account as search space. This includes exons but also introns, intergenic regions, and sequences that do not
meet splice junction motifs. Using 1,275 RNA-seq samples, we investigated to what extent genomic breakpoints can be
extracted from RNA-seq data and their implications regarding poly(A)-enriched and ribosomal RNA–minus RNA-seq data.
Comparison with whole-genome sequencing data revealed that most genomic breakpoints are not, or minimally,
transcribed while, in contrast, the genomic breakpoints of all 32 TMPRSS2-ERG–positive tumours were present at RNA level.
We also revealed tumours in which the ERG breakpoint was located before ERG, which co-existed with additional deletions
and messenger RNA that incorporated intergenic cryptic exons. In breast cancer we identified rearrangement hot spots
near CCND1 and in glioma near CDK4 and MDM2 and could directly associate this with increased expression. Furthermore,
in all datasets we find fusions to intergenic regions, often spanning multiple cryptic exons that potentially encode
neo-antigens. Thus, fusion transcripts other than classical gene-to-gene fusions are prominently present and can be
identified using RNA-seq.
Conclusion: By using the full potential of non–poly(A)-enriched RNA-seq data, sophisticated analysis can reliably identify
expressed genomic breakpoints and their transcriptional effects.

Keywords: gene fusion; RNA precursors; RNA-seq; chromosome breakage; genomic structural variation; cryptic exons;
TMPRSS2-ERG

Background

Genomic rearrangements are frequently observed in cancer and
can drive disease initiation and progression through disruption
of tumour suppressor genes and activation of oncogenes [1–
3]. Marked examples include TMPRSS2-ERG fusions in prostate
adenocarcinoma (PCa) [4] and BCR-ABL in chronic myelogenous
leukaemia [5]. DNA rearrangements and their aberrant liga-
tions are identified as genomic breakpoints by whole-genome
sequencing (WGS), but their potential role as driver mutation
is mostly unresolved as of yet. The majority of genomic break-
points involve intergenic regions and are thus typically not lo-
cated in messenger RNA (mRNA) and protein-coding sequences
[6]. Moreover, genomic breakpoints of fusion genes are mostly
located intronically [7]. To reveal their downstream effects, RNA
sequencing (RNA-seq) is crucial to investigate changes at the
transcriptional level and identify actual (in-frame) fusion tran-
scripts. Conversely, for fusion transcripts, identification of the
exact genomic breakpoint(s) can be essential to explain changes
in gene expression and to define the origins of alternative pro-
moter use and altered splicing or polyadenylation events. Com-
bined genomic and expression data enables further study of the
functional consequences of genomic rearrangements and signi-
fies whether an event is merely a passenger or a putative driver
mutation [7, 8]. However, for many transcriptome studies, the
exact genomic breakpoints of expressed rearrangements have
not been resolved because matched WGS, Sanger sequencing,
or similar analyses were not performed. Therefore, we set out
to determine whether genomic breakpoints could be identified
from RNA-seq data.

Next to targeted gene approaches, there are 2 main ap-
proaches in preparing RNA-seq libraries [9]. First, the more tra-
ditional method includes the positive selection of polyadeny-
lated (poly(A)+) mRNA to specifically target mRNA and elimi-
nate abundant ribosomal RNA (rRNA). Because splicing takes
place mostly co-transcriptionally, pre-mRNA is typically not
polyadenylated and thus not included in this approach. Alter-
natively, one can extract total RNA and use random hexamer
primers to initiate complementary DNA synthesis while re-

moving abundant unwanted RNAs by various additional meth-
ods. This approach is referred to as rRNA-minus and is com-
monly applied when (partially) degraded RNA from formalin-
fixed paraffin-embedded (FFPE) samples is sequenced.

rRNA-minus RNA-seq is thus capable of identifying non-
poly(A) transcripts such as circular RNAs (circRNAs), specific
types of small and long non-coding RNAs, and, importantly, ac-
tively transcribed precursor mRNAs (pre-mRNAs) [10]. Although
the exact numbers depend on the protocol being used, tissue
type, lariats [11], and intron lengths, typically 30–40% of rRNA-
minus RNA-seq reads map to intronic features, compared with
5–10% in poly(A)+ RNA-seq [12]. Therefore, rRNA-minus RNA-seq
datasets require ≥50% higher sequencing depth to achieve an
exon coverage comparable to poly(A)+ RNA-seq, while being ca-
pable of identifying additional RNA classes [9].

Fusion genes such as TMPRSS2-ERG and BCR-ABL are fre-
quently observed as drivers within their respective malignant
tissue [13]. Yet, many observed fusion genes are still of unknown
consequence and seen in small frequencies in various cancer
types. RNA-seq is highly suitable for fusion gene detection [14–
16].

Methods to integrate RNA fusions with genomic breakpoints
allow further assessment of functional consequences [7, 8, 17].
They are even capable of integrating complex higher order rear-
rangements but remain dependent on the availability of match-
ing DNA data. State-of-the-art fusion-detection tools such as
FusionMap, FusionCatcher, and JAFFA focus on exon regions or
splice junctions specifically [18–20], which are the main target of
poly(A)+ RNA-seq. Indeed, these tools also work well on rRNA-
minus RNA-seq because these also include exonic reads. Their
efficient search space reduction in turn reduces the overall com-
plexity and processing time. However, using rRNA-minus RNA-
seq, typically 30–40% of the aligned reads are intronic and a fur-
ther 20–25% of all reads are found to be intergenic [12], which
are often a priori neglected. This large proportion of intronic and
intergenic reads provides an opportunity to identify additional
cancer-specific transcripts and exact genomic breakpoints of fu-
sion genes. We have shown in a proof-of-concept that rRNA-
minus RNA-seq can indeed identify genomic breakpoints [10].
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Here, we leverage a novel algorithm named Dr. Disco to re-
port on the presence of genomic breakpoints in RNA-seq data, its
implications regarding poly(A)+ and rRNA-minus RNA-seq, and
on fused cryptic exons. The algorithm computationally identi-
fies such genomic breakpoints and exon-to-exon junctions in
a genome-wide fashion, taking into account the potential of
rRNA-minus RNA-seq. It was applied on 6 RNA-seq datasets
spanning multiple malignant tissue types (n = 1,275) (Table 1).
Indeed, we reveal exact causal genomic breakpoints as derived
from RNA-seq alone but limited to regions sufficiently expressed
such as fusion gene TMPRSS2-ERG. Furthermore, rRNA-minus
RNA-seq data can reveal more transcriptionally active rear-
rangements than poly(A)+ RNA-seq and results can be useful
to supplement WGS. While only large datasets were analysed
in this study, the method is developed for single-sample anal-
ysis. In summary, rRNA-minus RNA-seq in combination with a
suited analysis pipeline gives a more complete view on both the
origin and effects of genomic rearrangements and their direct
influence on the expression of associated genes.

Data Description

RNA-seq data from several types of malignant tissue were used.
For the NGS-ProToCol datasets (normal adjacent prostate, n =
41; prostate cancer, n = 51; normal adjacent colon, n = 18; col-
orectal adenoma, n = 30; and colorectal carcinoma, n = 30), car-
cinoma, adenoma (only colon), and adjacent normal tissue were
rRNA-minus sequenced to study condition-specific molecular
differences and further stratify tumour types [21, 22]. The PCa-
LINES dataset consists of PCa cell lines PC346C and VCaP and
additional PCa patient samples G-089, G-110, G-295, G-316, and
G-346, which were WGS, rRNA-minus RNA, and poly(A)+ RNA
sequenced. The included VCaP cell line is commonly used as a
model system for prostate cancer and is known to contain the
TMPRSS2-ERG fusion [23, 24]. The BASIS dataset consists of 560
WGS sequenced breast cancer (BrCa) samples [25] and 289 rRNA-
minus RNA samples [26, 27], of which 207 are matching. The
Chinese Glioma Atlas (CGGA) is composed of 274 rRNA-minus
RNA-seq samples of various types of gliomas [28]. MCF-7 cell
line data from ENCODE [29] were used for validation because
it is a commonly used gold standard dataset [20]. We made the
NGS-ProToCol and PCa-LINES publicly available; other data were
taken from the public domain (Table 1).

To identify exact genomic breakpoints from rRNA-minus
RNA-seq, we developed and implemented a novel algorithm,
termed Dr. Disco. Briefly, it uses reads with a split alignment
or read pairs with an inverted orientation or with a large insert
size: discordant reads [30]. It uses reads not only from exons but
also intronic and intergenic regions (Fig. 1 and Supplementary
Dr. Disco Technical Specification). Discordant reads are trans-
formed and inserted into a breakpoint graph [7]. The breakpoint
graph, which contains junctions derived from RNA data only, is
then extensively analysed to find clusters, resolve splicing, and
keep junctions from distinct events separated.

For terminology, we define exon-to-exon splice fusion junc-
tions (exonic junctions) as junctions that result from splicing
and of which it can be expected that they could be detected by
classical fusion detection algorithms. These also include fusions
to not annotated (cryptic) exons.

Fusion transcripts that are not a result of (cryptic) exon-
to-exon splicing are typically intron-to-intron junctions, span-
ning genomic breakpoints. Note that it is possible that genomic
breakpoints are located within exons and do not result in fused

spliced junctions (Supplementary Fig. S1). Because intron-to-
intron junctions are not the product of splicing and are not the
primary target of classical fusion gene detection, we consider
these intronic. After the graph is analysed, corresponding de-
tected junctions are marked ”exonic” or ”intronic” accordingly.
The detailed computational methodology is described in Sup-
plementary Methods and Supplementary Dr. Disco Technical
Specification. The method was used to perform analyses in par-
ticular to study junctions in RNA data beyond classical fusion
genes.

Findings
Evaluation of poly(A)+ detectors

The performance of the algorithm identifying mRNA fusions
was assessed by analysing the ENCODE MCF-7 dataset, which
was subsequently compared to poly(A)+ detector results pub-
lished earlier [20] (Fig. 2) and with Arriba [31], which also makes
use of STAR as aligner. Our method was not superior to JAFFA,
and performed rather similarly to FusionCatcher. It was mostly
limited in the total number of true-positive results identified, in-
dicating that it is more conservative than JAFFA, SOAPFuse, and
Arriba. Although the true-positives ratio for Arriba was consid-
erably lower, the total amount of true-positive results was the
highest.

Interestingly, unreported fusions spanning cryptic exons
and intergenic regions were observed, including ATXN7-
chr1:106,216,304, resulting in a fusion to cryptic intergenic exons
supported by a matching genomic breakpoint (chr3:6,394,8014-
chr1:106,192,959), and PRPF18-BEND7, resulting in anti-sense
transcription of BEND7 spanning cryptic in-gene exons (Supple-
mentary Fig. S2).

Dr. Disco’s performance of detecting only mRNA exon junc-
tions was comparable but not superior to existing tools, while
it revealed 27 additional high-confidence junctions using cryp-
tic exons (Supplementary Table S1). The time it took Dr. Disco
to complete analysis after the STAR alignment was 949 seconds,
2.07 times slower compared with Arriba (458 seconds). This is in
concordance with the expectation that analysing a larger search
space requires more conservative filtering and takes more re-
sources to complete.

Comparison of poly(A)+ and rRNA-minus RNA-seq

Results from 7 PCa samples with matching rRNA-minus and
poly(A)+ RNA-seq (PCa-LINES dataset) were compared (Fig. 3A).
Contrary to our initial hypothesis, the poly(A)+ results also re-
vealed intronic junctions, representing genomic breakpoints.
Still, rRNA-minus data identified (3.4×) more intronic junctions
as compared to poly(A)+ RNA-seq. The intronic junctions iden-
tified in poly(A)+ often had lower read counts or were located in
untranslated region terminal exons as in-exon located genomic
breakpoints (Supplementary Fig. S3). Terminal exons are known
for their relative large size as they are ∼6–7 times larger than
internal exons [32]. The number of exonic junctions, thus pre-
dicted mRNA fusions, was nearly identical for rRNA-minus and
poly(A)+ RNA-seq (144 vs 155).

Comparison of RNA-seq with DNA-seq data

Within the PCa-LINES dataset, the number of WGS-identified
genomic breakpoints vastly outnumbered those extracted from
the rRNA-minus RNA-seq (6.8%), indicating that only a frac-
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4 Fusion transcripts and genomic breakpoints

Table 1: Dataset overview

Dataset Tissue Sequencing n Depth Reference Source Comments

NGS-ProToCol Prostate cancer rRNA− RNA S 41 ∼70M EGAS00001002816 [42]
NGS-ProToCol Normal prostate rRNA− RNA S 51 ∼70M EGAS00001002816 [42]
NGS-ProToCol Colon cancer rRNA− RNA S 30 ∼70M EGAS00001002854 [21, 22, 42]
NGS-ProToCol Colon adenoma rRNA− RNA S 30 ∼70M EGAS00001002854 [21, 22, 42]
NGS-ProToCol Normal colon rRNA− RNA S 18 ∼70M EGAS00001002854 [21, 22, 42]
BASIS Breast cancer rRNA− RNA S 289 ∼150M EGAS00001001178 [26, 27]
PCa-LINES Prostate cancer rRNA− RNA S 6 (+1)∗ ∼37M EGAS00001001476 ∗NGS-ProToCol

7046-004-052
matches

PCa-LINES G-110
PCa-LINES Prostate cancer poly(A)+ U 7 ∼50M EGAS00001001476 [55]
PCMM-FFPE Prostate cancer rRNA− RNA S 529 ∼40M Shallow FFPE
CGGA Glioma rRNA− RNA U 274 ∼30M GSE48865 [28]
ENCODE MCF-7 Breast cancer poly(A)+ S 1 ∼138M SRR534293 [20, 29]
BASIS Breast cancer WGS DNA 560 ∼40× EGAS00001001178 [25]
PCa-LINES Prostate cancer WGS DNA 7 ∼100× EGAS00001001476 [24]
Weier Prostate cancer TMPRSS2-ERG

targeted DNA
29 [39] No raw data

were used for
determining

WGS coverage
Pleasance Melanoma WGS DNA 9 ∼40× EGAS00000000052 [56] No raw data

were used for
determining

WGS coverage

RNA sequencing datasets are given a suffix indicating whether they were performed stranded (S) or unstranded (U); rRNA− indicates rRNA-minus. ∗The PCa-LINES

dataset consists of 7 samples of which sample G-110 is rRNA-minus RNA-sequenced as part of the NGS-ProToCol study. Therefore the PCa-LINES dataset contributes
7 samples, from 6 unique patients, to the study.

tion of the genomic rearrangements is expressed at a level to
be detected by rRNA-minus RNA-seq. Both intronic and exonic
junctions from both rRNA-minus and poly(A)+ data co-located
near WGS-detected genomic breakpoints (Supplementary Fig.
S4), confirming their validity.

Four BrCa RNA-seq samples from the BASIS dataset [25, 26]
were used to assess the influence of sequencing coverage and
read length. Systematically truncating the reads showed that
the number of detected junctions decreased as sequencing reads
became shorter (Fig. 3B). From a read length <55 nt, the number
of detected junctions increased. This was due to an overall in-
crease in misalignments that do not resemble actual evidence of
genomic rearrangements, indicating that a minimum length of
55 bp is needed for accurate detection. Irrespective of the num-
ber of genomic breakpoints present within a sample as deter-
mined by WGS, an increase in overall sequencing depth is posi-
tively correlated with an increase in detected junctions (Fig. 3B).

All 207 WGS and rRNA-minus RNA-seq matching samples
from the BASIS cohort [25, 26] were used to compare interchro-
mosomal junctions. WGS identified a total of 6,531 interchromo-
somal genomic breakpoints, of which 422 (6.5%) were found in
both assays (Fig. 4A), a similar percentage as in PCa-LINES. Dr.
Disco detected 357 unique genomic breakpoints that were only
present within the RNA-seq data, of which 100 were identified
within only 8 BrCa samples that also had an overall high num-
ber of WGS-detected genomic breakpoints (Supplementary Fig.
S5). The density of WGS- and rRNA-minus–detected junctions
within chromosomal bins was highly similar (Pearson correla-
tion: r = 0.72, Fig. 4B, Supplementary Figs S6–S8), with promi-
nent focal peaks near the genomic loci of CCND1, SHANK2, and
FGFR1.

Pan-cancer analysis

We analysed the results of the algorithm on rRNA-minus RNA-
seq data (n = 651) from different malignant tissue types (Figs 4B
and 5): the BASIS, NGS-ProToCol colon and prostate, and CGGA
datasets (Table 1).

Intronic and exonic junctions were identified in each dataset.
The different malignant tissue types showed distinct regions
enriched with intronic and exonic junctions (Fig. 4B). Known
prominent events include TMPRSS2-ERG in PCa, EGFR, CDK4, and
MDM2 in glioma, and CCND1 in BrCa. The breakpoints per sam-
ple and associated clinical parameters are provided in Fig. 5. The
lowest mean number of genomic breakpoints per tissue type
was found in normal adjacent samples (colon = 0.5; prostate =
0.9) followed by colorectal adenoma (1.1) (Supplementary Figs
S9 and S10). In 2 adjacent normal-looking prostate samples, in-
tronic and exonic junctions were found that were exactly identi-
cal to junctions in their matching malignant sample. These ad-
jacent normal-looking tissue samples were most likely contam-
inated with cancer cells (Supplementary Fig. S9B). Of the differ-
ent malignant tissue types, colorectal cancer samples were char-
acterized by the lowest mean number of junctions (1.1) followed
by combined low- and high-grade glioma (2.1) (Supplementary
Fig. S11). Conversely, PCa (4.3) and BrCa (9.3) were characterized
by relatively high numbers of genomic breakpoints per sample.
These mean numbers were not normalized for sequence depth
because results are also influenced by dataset-specific differ-
ences in read length, stranding, RNA quality, and library prepara-
tion. Therefore, comparison of these mean numbers of junctions
is confounded by these factors.

Associations between the number of detected intronic junc-
tions per sample and clinical parameters were investigated
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A

B

Figure 1: Overview Dr. Disco pipeline and principle. (A) Schematic representation of fusion-gene RED-BLUE. Owing to relatively large intron sizes, in-gene genomic
breakpoints occur most often intronically. The fusion results in different fusion splice isoforms (brown splice junction annotation in fusion gene structure). Fusion
splice junction spanning reads form the classical evidence for mature mRNA fusion events (reads marked in green). In rRNA-minus data, intronic pre-mRNA reads

(reads marked in pink) may cover causal genomic breakpoints. (B) Pipeline flow chart: RNA-seq data is aligned. Discordant reads are transformed into edges and
inserted into a breakpoint graph. In the graph, intronic or exonic derived edges are kept separate. Detection of junctions is performed by analysing the graph for
clusters. An additional splice variant correction is applied. Identified junctions are filtered, annotated, and marked intronic or exonic. QC/QA: quality control/quality

assurance.

A B

Figure 2: Evaluation on ENCODE MCF-7 dataset [20, 29]. For our algorithm, only non–head-to-tail junctions located on both sides at annotated exons were included.
TP: true positive.
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6 Fusion transcripts and genomic breakpoints

A

B

Figure 3: Overlap across sequencing types and library size influence. (A) Overlap of cumulative interchromosomal junctions of 7 WGS PCa samples rRNA-minus and

poly(A)+ RNA-seq (PCa-LINES dataset). Overlap in only intronic junctions representing genomic breakpoints (left) and only exonic splice junctions (right). Of the 69
exonic junctions only found in rRNA-minus RNA-seq, 40 were detected in the matching poly(A)+ but did not pass filtering. Of the 80 poly(A)+-only exonic junctions,
58 were found in rRNA-minus but did not pass filtering. Not passing filtering mostly occurred because of insufficient discordant reads. (B) The number of predicted
junctions as function of sequencing depth (left) and read-length (right) reduction. BrCa samples were selected for high sequencing depth (PR18022 and PR18037) or a

high number of junctions (PR4841 and PR8660). Left: The number of predicted junctions per sequencing depth (10–100%) with the full read-length (2 × 75 bp). Reducing
the sequencing depth, also for samples with a high sequencing depth, reduces the number of detected junctions. Sample PR4841 reaches a plateau. Right: Each data
point represents the number of predicted junctions per given read length, at full sequencing depth. Truncating sequencing-reads results in a lower number of predicted
junctions. However, below 55 nucleotides the number of detected junctions increases.

within datasets (Fig. 5). In BrCa, presence of kataegis (P = 1.9
× 10−9) was positively associated with the number of observed
intronic junctions whereas estrogen receptor–positive (ER+) tu-
mours were negatively associated (P = 0.9 × 10−3) with the num-
ber of intronic junctions. In glioma, tumour grade IV is positively
associated with the number of intronic junctions per sample
(P = 1.1 × 10−5), whereas tumour grade II (P = 2.9 × 10−8) and
presence of IDH1 mutation (P = 0.8 × 10−3) were negatively as-
sociated. Within PCa no association was observed between the
number of intronic junctions and the incidence of high Gleason
grade (≥8; P = 0.08; n = 4/50) and metastasis (P = 0.16; n = 8/51).
Within BrCa, the number of intronic junctions correlated posi-
tively with the number of WGS-detected genomic breakpoints
(Spearman correlation: ρ = 0.71, P = 2.2 × 10−16, Supplementary
Fig. S12). Because of the relative low number of junctions per
sample combined with low number of colorectal cancer sam-
ples, further in-depth analysis on its recurrent events was not
performed.

In the CGGA, BASIS, and NGS-ProToCol datasets ∼65% of all
intronic and exonic junctions have both sides located within
an annotated gene (Fig. 6). Inversely, ∼35% of the junctions
have ≥1 side located within an intergenic region, regions that

are often dismissed a priori by classical fusion gene detec-
tion tools [19, 20]. We found transcripts that incorporated cryp-
tic (unannotated) exons, both intergenic as intronic (including
anti-sense). For instance, a BrCa sample harboured intergenic
junctions in SDC4 transcripts using 5 consecutive cryptic ex-
ons (Supplementary Fig. S13). In contrast, a PCa sample had
an intergenic rearrangement lacking mRNA-level transcripts,
thus only visible by the presence of pre-mRNA (Supplementary
Fig. S14).

Genes associated with peaks in breakpoints
There were multiple, cancer type–specific hot spots of junctions
located near known oncogenes (Fig. 4) such as KIT, PDGFRA,
EGFR, CDK4, MDM2 (glioma), TMPRSS2, ERG (PCa), FGFR1, and
CCDN1 (BrCa). Enrichment analysis was performed using HUGO
symbols of genes recurrently hit per dataset, indicating that the
pathway “Transcriptional misregulation in cancer [KEGG:05202]”
was significantly more frequently hit (P = 1.6 × 10−4) within PCa
due to TMPRSS2, ERG, ETV1, H3FA3, SLC45A3, and ELK4. Within
BrCa, pathways ETF and E2F were significantly enriched (P = 6.75
× 10−10, P = 2.8 × 10−6) in ER+ BrCa and “Proteoglycans in can-
cer” in ER− BrCa (P = 1.4 × 10−5). Genes that were recurrently hit
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Figure 4: Integration RNA-seq analysis and WGS in BrCa. (A) Number of detected genomic breakpoints per subgroup in WGS and rRNA-minus RNA-seq data of

207 matching BrCa samples. Outlines in blue indicate presence only in WGS data, in red only in RNA-seq data, and in purple in both. To avoid artefacts from RNA
post-processing such as circRNAs and read-throughs, only interchromosomal entries were interrogated. Of the interchromosomal WGS breakpoints, 6,048 did not have
sufficient discordant reads in the RNA-seq data. Of 61 genomic breakpoints, the threshold of sufficient discordant RNA-seq reads was exceeded, but it was not detected
by Dr. Disco or did not pass filtering. A total of 422 breakpoints were detected in both the assays and 357 RNA-seq–detected breakpoints did not match a WGS entry. (B)

Chromosome plot representing the binned density of inter- and intrachromosomal intronic junctions. For the BrCa samples, Dr. Disco RNA-seq analysis (red) and WGS
breakpoints (green) are depicted. The number of RNA-seq genomic breakpoints in the colorectal cancer and adenoma datasets is low and no recurrent breakpoints
have been identified yet. The number of genomic breakpoints in colorectal adenomas was lower than in colorectal cancer. The observed peaks in colorectal cancer

originated from multiple, sample-specific junctions (Supplementary Fig. S10).

in glioma were found more often in pathways “Rap1 signaling
pathway” (P = 3.2 × 10−4), “Glioma” (P = 5.9 × 10−3), and “Ras
Signaling” (P = 2.6 × 10−3) (Supplementary Table S2).

Large gene amplifications
Hot spot regions (20−30 Mb) enriched with RNA-seq−detected
junctions were observed in the BrCa (chr11) and glioma (chr12)
datasets. These hot spots differed from focal events such as

TMPRSS2-ERG in the sense that they were larger, had no con-
sistent fusion partners, and often contained multiple hot spot
junctions per sample. If these hot spot region rearrangements
are responsible for consistent changes at the transcriptional
level, they may provide a selective advantage. In both the BrCa
and glioma datasets, transcriptional effects of the hot spot rear-
rangements were investigated by performing differential gene
expression analysis between samples with (BrCa: chr11, glioma:
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Figure 5: Pan-cancer results summary. Intronic and exonic junctions are given per sample for the NGS-ProToCol, BASIS, and CGGA datasets with their associated
clinical parameters. For the colon samples, the predicted CMS classes are provided; for the prostate cancer samples, the Gleason grade and metastatic progression are
provided; for the breast cancer samples, the ER, BRCA1, BRCA2, kataegis, and Dr. Disco–detected chr11-hot spot status are provided; and for the glioma samples, the
grading, recurrence, IDH1 mutation status, sex, and the Dr. Disco–detected EGFR and chr12 hot spot status are provided.

Figure 6: (Inter)genic junction status. Frequency of intronic and exonic junctions
and their gene/intergenic status. Because the glioma dataset was sequenced un-
stranded, junctions with 1 intergenic side are grouped together. In all datasets,
∼3/8 of the junctions have ≥1 intergenic side. Inter- and intrachromosomal junc-

tions were included, suspected circRNAs were discarded, and unlocalized and
unplaced sequences (chrUn ...) and alternate loci (chr... alt) spanning junctions
were discarded. Intronic and exonic junctions corresponding to the same event

were treated as a single entry.

chr12) and without a hot spot rearrangement (BrCa: n = 122/283;
glioma: n = 45/274, respectively).

BrCa samples having a chr11 hot spot rearrangement were
characterized by a large stretch of significant up-regulated genes
within the respective hot spot region (Fig 7A−C, Supplemen-
tary Fig. S15). The large genes SHANK2 and TENM4, both located
in the hot spot region, were the most frequently hit genes (25

and 13 samples, respectively), yet were not among the strongest
up-regulated genes of the overall region. Instead, genes with
a strong increase in logFC were FGF4 and CCND1, the cluster
KCTD21, ALG8 and GAB2, and genes downstream of TENM4.
Up-regulation of the overall region indicated amplifications of
CCND1 and/or the gene cluster, which is in concordance with
previous reports [33]. We presume that selection of breakpoints
near SHANK2 is influenced by being adjacent to CTTN, a gene
containing an enhancer often co-amplified with CCND1 [34]. The
high frequency of junctions in the relatively large, yet not heavily
up-regulated SHANK2 (785 kb) and TENM4 (788 kb) suggests that
they are “collateral damage” of the amplifications, a hypothesis
that has been described in glioma [35]. This hypothesis is further
supported by the lack of consistent fusion partners, consistency
in acting as acceptor or donor, and the absence of a clear spike
in cumulative breakpoints (Fig. 7A and B; Supplementary Table
S3).

Glioma samples having a junction harbouring the chr12
hot spot region (Fig. 7D−F) were analysed similarly and also
showed up-regulation of genes in the hot spot locus, with an
increased logFC of CDK4, MDM2, and neighbouring genes. Both
CDK4 and MDM2 are known to be hyper-amplified in glioblas-
toma [36], often by double minute chromosomes [37]. The junc-
tions showed a sharp increase in close proximity of CDK4
(Fig. 7D and E), likely indicating a common start of the am-
plification event. These breakpoints and up-regulated genes
ceased just prior to LRIG3. Similarly, glioma samples harbour-
ing rearrangements near the commonly hyper-amplified EGFR
showed up-regulation of the surrounding locus (Supplementary
Fig. S16).

Using RNA-seq data only, genomic rearrangements can be
identified that can thereafter be used to reveal associated over-
expression of oncogenes that have resulted from high-copy gene
amplifications.
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A

B

C

D

E

F

Figure 7: Differential gene expression in junction hot spot regions. (A−C) Overview of chr11 junctions, junction positions, and hot spot−associated differential gene
expression in BrCa, using RNA-seq data only. (A) Intrachromosomal junctions not marked as putative circRNA, indicated by horizontal lines. (B) Junction end po-
sitions from intronic and exonic, inter- and intrachromosomal junctions not marked as putative circRNA. (C) Chromosomal differential expression plot for locus

chr11:60,000,000−90,000,000 (grey square) with a q-value threshold of 0.001. Genes with the highest number of rearrangements, SHANK2 and TENM4, are illustrated
with coloured boxes. Peaks in logFC were observed surrounding ORAOV1, CCND1 and FGF4, and surrounding TENM4. (D−F) Overview of chr12 junctions, junction
positions, and hot spot−associated differential gene expression in glioma. (D) Intrachromosomal junctions not marked as putative circRNA are indicated with
lines. (E) Junction end positions from intronic and exonic, inter- and intrachromosomal junctions not marked as putative circRNA. The junction enriched region

chr12:40,000,000−75,000,000 is indicated with a grey square. (F) Chromosomal differential expression plot for locus chr12:40,000,000−75,000,000 with a q-value thresh-
old of 0.01. Peaks in logFC from up-regulated genes are found near CDK4 and MDM2.

Chromothripsis
In VCaP, the q-arm of chr5 has been subjected to chromothrip-
sis as revealed by 468 intrachromosomal WGS-detected break-
points [24]. Seventeen intronic and exonic junctions were iden-
tified in rRNA-minus RNA-seq; thus evidence for chromothrip-
sis events was identified at the (pre-)mRNA level (Supplemen-
tary Fig. S17). In 3 BrCa samples, high numbers of WGS-detected
genomic breakpoints were identified on the q-arm of chr17.
RNA-seq analyses revealed intronic and exonic junctions con-
cordant with WGS data, which recurrently involved the genes
BCAS3, APPBP2, MED13, USP32, and VMP1 (Supplementary Fig.
S18). Taken together, this demonstrates the possibility of observ-
ing chromothripsis-derived junctions in RNA-seq.

TMPRSS2-ERG

From previous analyses it emerged that TMPRSS2-ERG was the
most prominent focal event identified. Therefore, we leveraged

NGS-ProToCol prostate tissue sample data to study this fu-
sion in detail. TMPRSS2-ERG is a highly prevalent fusion gene
in prostate cancer (∼50% of the diagnosed patients) [4], re-
sulting in TMPRSS2-driven up-regulation of ERG. In 32 of the
51 samples Dr. Disco identified mRNA fusion transcripts of
TMPRSS2-ERG, including genomic breakpoints in 27 of 32 sam-
ples (Fig. 8). These fusions were in concordance with high ERG
expression in those samples exclusively. The detection rate for
genomic breakpoints for this oncogenenic fusion gene is thus
markedly higher than for the overall number of genomic break-
points. The genomic breakpoint did not pass filtering in sam-
ple 072, was marked exonic in sample 027, and was merged
with closely adjacent (<450 bp; insert size) exonic junctions in 3
samples (053, 050, and 065), indicating that breakpoint-spanning
reads were present in all 32 TMPRSS2-ERG–positive RNA-seq
samples.

Three samples had their ERG-flanking genomic breakpoint
located in an intergenic region upstream to ERG’s first exon
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10 Fusion transcripts and genomic breakpoints

A

B

Figure 8: TMPRSS2-ERG junction map. TMPRSS2 and ERG loci with endpoints of the junctions in NGS-ProToCol RNA-seq and non-matching targeted DNA-seq (Weier
dataset). Gene structures are indicated at the bottom. Intronic junctions (representing genomic breakpoints) and genomic breakpoints (Weier dataset) are indicated
in blue and exonic junctions in red. (A) For TMPRSS2, most breakpoints are detected after exon 1, up to exon 3. At mRNA level, apart from the first exons (1a and 1b),

also exon 0 and exon 2 were commonly included in fusion transcripts. Two novel recurrent cryptic exons (∗1 and ∗2) were common in fusion transcripts. (B) Three
NGS-ProToCol samples (048, 05, and 075) have their genomic breakpoint before ERG and result in transcripts with additional, novel, intergenic cryptic exons.

(Supplementary Figs S19 and S20). In 2 of these 3 sam-
ples, TMPRSS2-ERG fusion transcripts were identified contain-
ing cryptic intergenic exons (chr21:38,692,521–38,692,797 and
chr21:38,701,593–38,701,947; hg38). In the same 2 samples, ERG
had additional deletions, removing exon 2 (Supplementary
Fig. S19).

The most abundant exonic junctions were T1-E4 and T1-E5
(Fig. 8, Supplementary Figs S20 and S21), which is in concordance
with previous reports [38]. Genomic breakpoints were indeed lo-
cated in hot spot regions within the first 2 introns of TMPRSS2
and the last half of ERG intron 3 [39]. Subsequent analysis of
shallow sequenced FFPE RNA-seq samples revealed TMPRSS2-
ERG in 181 samples (Supplementary Figs S20 and S21) and con-
firmed this remarkable breakpoint preference region within ERG
intron-3 more precisely.

Two novel exons in TMPRSS2 were observed in both fusion
and wild-type transcripts (Fig. 8). These cryptic exons were
both expressed at a low level as they represented 3% of all
TMPRSS2-ERG reads in samples having the splice variant. Fur-
thermore, intergenic TMPRSS2 exon-0 [40] was detected in fu-
sion mRNA-transcripts within 18 of 32 TMPRSS2-ERG–positive
samples.

One sample contained an exonic junction originating in
ERG and spanning to TMPRSS2 in which the gene order and
included exons indicated that this ERG-TMPRSS2 fusion was
caused by a reciprocal translocation instead of the common 3-
Mb deletion (Supplementary Fig. S22). Other TMPRSS2-related
fusions were TMPRSS2-RERE, SERINC5-TMPRSS2, TMPRSS2-TBX3,
TMPRSS2-PADI4, MGA-TMPRSS2, and TMPRSS2-CATSPER2 (Sup-
plementary Table S4).

VCaP
PCa cell line VCaP has been subjected to intensive research, re-
vealing that it is TMPRSS2-ERG positive and contains 2 additional
related genomic rearrangements (breakpoint A and breakpoint
B) [24, 39]. TMPRSS2-ERG in VCaP was analysed using both rRNA-
minus and poly(A)+ RNA-seq data.

Poly(A)+ RNA-seq shows that only the first exon of TMPRSS2
splices to ERG, even though the genomic breakpoint to ERG is
located in the fifth intron (Supplementary Fig. S23A). The rRNA-
minus data not only confirm this splice junction but also reveal
all TMPRSS2- and ERG-spanning genomic breakpoints, concor-
dant with the WGS results. Moreover, read stranding indicates
that a region containing the fourth and fifth exon is inverted and
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that its breakpoint A is an inversion. Breakpoint B is an amplifi-
cation, and the junction from TMPRSS2 to ERG is again inverted
such that ERG is transcribed in its original orientation. The junc-
tion from TMPRSS2 to ERG deletes the genomic region containing
ERG’s exons 2 and 3. Thus, only TMPRSS2 exon 1 splices to ERG
because exons 2 and 3 are deleted and exons 4 and 5 are inverted
(Supplementary Fig. S23B). The small proportion of reads still
present within the deleted TMPRSS2 exons 2 and 3 in the rRNA-
minus data originate from the non-fusion allele(s). The rRNA-
minus RNA-seq data not only revealed both intronic and exonic
junctions but also showed the complex downstream effects on
transcription and splicing.

CircRNA detection

Head-to-tail aligned reads (Supplementary Fig. S24) are marked
as chimeric (discordant) by STAR and are used as input for our
method. Such reads are not only observed in transcripts from
genomic tandem duplications but also from circular mitochon-
drial DNA and circRNAs. Using the PCa-LINES rRNA-minus sam-
ples, we found that 88.6% of the junctions with a head-to-tail
orientation were located exactly on exon-junctions correspond-
ing to annotated circRNAs from circBase v31 (Supplementary
Fig. S25).

Discussion

RNA-seq is generally performed as poly(A)+ RNA-seq, and
fusion gene detection algorithms are in particular focused
on annotated exons or splice junctions. It has become com-
mon practice to sequence ribosome-depleted total RNA (rRNA-
minus) [12], especially for partially degraded (FFPE) RNA sam-
ples. rRNA-minus RNA-seq is interesting because it also yields
non-polyadenylated transcripts, including pre-mRNA–derived
intronic sequences. As a result, there is more genomic cover-
age in rRNA-minus RNA-seq alignments compared to poly(A)+

RNA-seq (Supplementary Fig. S26), which provides more oppor-
tunity to reveal fusion transcripts and a broader understanding
of the transcriptome. Because genomic breakpoints are often
harboured within introns [6] and intergenic regions (Supplemen-
tary Fig. S27), we interrogated to what extent rRNA-minus RNA-
seq can be used to reveal genomic breakpoints because this also
captures intronic (pre-mRNA) reads. Addressing this required
analysing the genome without regional restrictions.

Here, we confirm, by using Dr. Disco, that RNA-seq data
can be used to reveal genomic breakpoints of expressed tran-
scripts in an automated fashion. Detection was limited to ∼7%
of WGS-detected breakpoints but markedly higher for the driver
TMPRSS2-ERG fusion gene (85% detected; 100% presence). Be-
cause the algorithm was conservative in detecting mRNA fu-
sions, it is likely that genomic breakpoints were missed and the
actual percentage is somewhat higher. Conversely, estimation of
this percentage implies that WGS results offer the ground truth,
but these are also affected by noise, coverage, and filter cut-
offs, indicating that this percentage is an approximation. The
results commonly included intergenic junctions. For instance, 3
TMPRSS2-ERG fusions had their breakpoint located before ERG,
supported by cryptic intergenic splice junctions and intergenic
pre-mRNA coverage (Supplementary Fig. S19). Furthermore, in-
tronic intergenic junctions in chromothripsis regions in 3 BrCa
samples were in 14 of 18 cases validated by WGS junctions (Sup-
plementary Fig. S18A).

That both Arriba and Dr. Disco make use of STAR and that
Arriba finds a higher number of true-positive results indicates

that improving the filtering is an important future step, but
care must be taken not to compromise Dr. Disco’s true-positive
ratio. The large search space combined with graph analysis
was an effective solution as shown by providing a unique view
on 1,275 transcriptomes. Whereas our initial hypothesis was
that only rRNA-minus RNA-seq would reveal genomic break-
points, this also accounts for poly(A)+. In poly(A)+ RNA genomic
breakpoints are observed less frequently, with lower confidence,
and often in long untranslated regions. The VCaP TMPRSS2-
ERG analysis underlined the differences: on the basis of rRNA-
minus RNA-seq, each genomic rearrangement with resulting
splice variants and their strand as well as the order of events
could be deduced, while both the poly(A)+ and WGS alone were
insufficient.

CircRNAs are a relatively new group of non-polyadenylated
transcripts with >90,000 different human circRNAs identified
so far [41, 42]. The distinctive signature of proximate exonic
head-to-tail junctions sets them apart from other junctions, ex-
cept for small tandem duplications. A useful addition to the al-
gorithm could be annotation of the junctions using a circRNA
database such as circBase [41]. The proposed method is not
specifically designed to identify circRNAs because it has strin-
gent cut-off levels, merges splice variants into subgraphs, and
requires >1 read. The number of circRNAs identified is therefore
lower as compared with dedicated detection tools such as CIRI
[43, 44].

The number of RNA-seq–detected intronic junctions repre-
senting genomic breakpoints varied widely between the 4 differ-
ent cancer types (PCa, BrCa, colorectal cancer, and glioma). This
variation is in line with the omics-reported number of structural
variants—low in colorectal cancer [45] while high in BrCa [46,
47]—but these differences are confounded by the influence of
sequencing depth, length, and library preparation, which vary
per dataset.

While only a fraction of all genomic rearrangements is tran-
scribed, an even smaller fraction is causal for fusion genes,
which are currently of high interest in RNA research. Transcribed
genomic breakpoints more often involve driver events than non-
transcribed genomic breakpoints, as seen with TMPRSS2-ERG.
Known exceptions that can be considered driver events include
promoter and enhancer rearrangements such as known for AR
and FOXP1 [48], but also tumour suppressor gene deletions [34,
49]. The reasoning that RNA-seq is not a replacement for WGS is
valid. However, we show that by also looking at intronic and in-
tergenic regions, more cancer-specific transcripts are identified
and context is provided than being restricted to classic mRNA
fusion genes only.

Although WGS depth surpasses 40× coverage, Dr. Disco
showed that 26% and 48% of all RNA-seq intronic junctions in
PCa and BrCa, respectively, were not identified by WGS. While
these will contain false-positive results for sure, 100 of the 357
were found in 8 of the 207 samples all characterized by high
number of genomic breakpoints. We suspect that this discrep-
ancy is partially due to actual genomic breakpoints missed by
WGS because of the following factors: high RNA-seq coverage of
highly expressed genes (up to 1000×), clonality because this dif-
ference was in particular high for a small subset of samples, low
local coverage in WGS, and selection criteria in software such as
cut-offs and read mapping rulings. In the PCMM-FFPE dataset,
samples with low insert sizes or short read lengths often re-
sulted in insufficient split-reads whilst resulting in many false
positive read-pairs in full transcriptome analysis. However, FFPE
data could still be used effectively in identifying the targeted,
highly expressed, TMPRSS2-ERG fusion events.
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The large number of PCa samples allowed TMPRSS2-ERG to be
analysed in-depth, revealing additional cryptic and intergenic
exons including TMPRSS2 exon 0 [40], a detailed map of the
genomic breakpoints, genomic breakpoints located before ERG
that combined with cryptic intergenic exons co-exist with exon
2 deletions, and a tumour that harbours TMPRSS2-ERG that orig-
inated from a reciprocal translocation rather than a deletion. In
VCaP, stranded RNA-seq provided an advantage in deciphering
the chronological order of complex genomic events. Moreover,
this underlined the importance of automatic resolution of com-
plex genomic rearrangements or poly-fusions. The current im-
plementation does not offer such top-level integration for poly-
fusions, while techniques exist with this purpose in mind [7, 50].
Integration of such techniques prompts future work. The current
algorithm uses discordant reads exclusively. It would be inter-
esting to investigate the added value of extending the detection
with regions enriched with concordant opposite stranded reads,
to strengthen detection of junctions having insufficient coverage
of discordant reads.

In both BrCa and glioma, RNA-seq data alone revealed hot
spot regions of junctions with subsequent up-regulation of
known amplified oncogenes and neighbouring genes within
these regions. The inconsistent transcriptional direction of
the junctions combined with the lack of consistent accep-
tor/donor genes provides additional context that distinguishes
these events from focal fusion genes. In BrCa, this combined
analysis indicated that the events are related to CCND1 ampli-
fications, despite the frequent events in sizeable genes TEMN4
and SHANK2 of which their fusion transcripts are not driving
cancer.

Chromothripsis-derived junctions matching WGS-detected
genomic breakpoints were present at the RNA level, in VCaP and
3 BrCa samples. As with most genomic rearrangements, the ma-
jority of the chromothripsis rearrangements were not detected
on the RNA level. Solely on the basis of RNA-seq data, it will be
difficult to prove the presence of chromothripsis because not all
parameters that define this specific process can readily be ex-
tracted (e.g., copy-number variations, short insertions, loss of
heterozygosity) [51, 52]. However, potential indicators for onco-
genic chromothripsis events can be present in RNA.

While our preliminary aim was to study to which extent ge-
nomic breakpoints are present in RNA, we were surprised by
how common both intergenic events and cryptic exons are. That
∼35% of the junctions in rRNA-minus datasets were full or par-
tial intergenic events is an under-representation because, as for
example with TMPRSS2-ERG exon-0, intergenic splice variants
are merged with gene-spanning splice variants and will be con-
sidered in-gene as-whole. Intergenic mRNA fusions are charac-
terized by incorporation of (typically multiple) cryptic exons. But
cryptic exons are not limited to intergenic events, as we reported
that cryptic exons in fusion transcripts transcribed in the anti-
sense direction of a gene are common.

Cryptic exons are of importance because they may encode
nonsense proteins with completely novel neo-antigens that are
more divergent than point mutation–based neo-antigens and
could therefore be more immunogenic [53]. We want to empha-
size the importance of fusions beyond those incorporating an-
notated exons because we show that they can be transcribed
into stable mRNA, thereafter be translated into protein, and po-
tentially be oncogenic and/or immunogenic. This, deciphering
the consequence of rearrangements, annotation of cryptic ex-
ons, and their coding potential for nonsense protein sequences
is relevant for therapeutic interventions using tumour-specific
antigens [54].

Conclusion

Facilitated by Dr. Disco, we set out to extract both intronic
and exonic junctions from comprehensive rRNA-minus RNA-
seq datasets and identified novel genomic breakpoints, circR-
NAs, novel gene and intergenic fusions, cryptic exons, and chro-
mothripsis events and were able to link expressed rearrange-
ments to transcriptional outcome. Discovering both genomic
breakpoints and exonic junctions from only RNA-seq data re-
quires an analysis strategy keeping these 2 levels of informa-
tion separated. The number of breakpoints detected is limited
to ∼7% because most are not within expressed regions. These
results indicate that this analysis is not a replacement for WGS,
but performing analysis like this will result in considerably more
cancer-specific transcripts than interrogating classical fusion
genes only. This holds in particular for rRNA-minus RNA-seq,
which harbours more intronic reads. Furthermore, combined
WGS and RNA analysis showed that RNA can function as infor-
mative supplement to WGS analysis because of stranding, ex-
pression, and resolution of the fusion gene structure(s). rRNA-
minus RNA-seq provides more unique and complete informa-
tion on non-polyadenylated and aberrant transcripts and, if the
pre-mRNA is sequenced, the genomic breakpoints that underlie
transcriptional changes.

Thus, RNA-seq data can reveal genomic breakpoints, (cryp-
tic and/or intergenic) splicing, and gene expression information,
which together can reveal consequences and their selective ad-
vantage for cancer development and progression and be a useful
supplement to DNA-seq.

Methods
Sequencing and datasets

The sequencing datasets used are given in Table 1. For NGS-
ProToCol and the rRNA-minus RNA-seq of PCa-LINES, RNA was
extracted using RNA-Bee (Campro Scientific, Berlin, Germany),
and the library prepared for RNA-seq used the NEBNext Ultra Di-
rectional RNA Library Prep Kit for Illumina with rRNA reduction
(New England BioLabs, Ipswich, Massachusetts, United States of
America). The sample preparation was performed according to
the protocol “NEBNext Ultra Directional RNA Library Prep Kit for
Illumina” (NEB, Cat. No. E7420S/L and E6310S/L/X). Briefly, rRNA
was reduced using the RNase H-based method. Then, fragmen-
tation of the rRNA-reduced RNA and a complementary DNA syn-
thesis was performed. This was used for ligation with the se-
quencing adapters and PCR amplification of the resulting prod-
uct. The quality and yield after sample preparation were mea-
sured with the Fragment Analyzer (Advanced Analytical). Clus-
tering and DNA sequencing using the Illumina cBot and HiSeq
2500 was performed according to manufacturer’s protocols (Ser-
viceXS, Leiden, The Netherlands). A concentration of 16.0 pM of
DNA was used as input. HiSeq control software HCS (v2.2.58) was
used. Image analysis, base calling, and quality check were per-
formed with the Illumina data analysis pipeline RTA (v1.18.64)
and Bcl2fastq (v2.17). The 126-bp stranded Illumina HiSeq 2500
paired-end reads have a peak in fragment size of 300–600 bp and
the samples have a mean depth of 70 million paired-end reads.

Of the PCa-LINES samples, each sample was WGS DNA se-
quenced and processed using the Complete Genomics plat-
form [24, 57] (CompleteGenomics, San Jose, California, United
States of America). The matching poly(A)+ RNA-seq sam-
ples were taken from the TraIT-Cell Line Use Case study [55,
58]. rRNA-minus RNA-seq sample G-110 was not sequenced
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within PCa-LINEs but sequenced in NGS-ProToCol as sample
7046-004-052.

In the BASIS RNA-seq dataset [26], total RNA was extracted
and cleaned from abundant RNAs such as rRNA and trans-
fer RNA as described elsewhere [27]. The BASIS DNA-seq data
preparation and analysis is described elsewhere [25] and co-
ordinates were converted to hg38 using pyliftover (v0.4) where
needed.

The detection of genomic breakpoints from additional
TMPRSS2-ERG fusions determined by targeted DNA-seq was de-
scribed elsewhere [39], and genomic coordinates were obtained
from this study accordingly. Genomic breakpoints of TMPRSS2-
ERG and chromothripsis on chr5 in VCaP were described else-
where [24, 39]. Predicted CMS classes for NGS-ProToCol colon
samples were described elsewhere [22]. CGGA metadata were
described elsewhere [28].

Computational analysis

RNA-seq data were aligned with STAR [59] (v2.4.2) using fu-
sion settings and hg38 as reference genome. More details
are given in the Supplementary Methods. Dr. Disco (v0.17.8,
git commit 2a9ff32950b71029b124ff4d16544b2953c57dbe)
was used for analysis. Arriba [31] (v2.1.0, git commit
3492d2c28917fe6c9320b1caab73afbb93f7bfbf) was used for
evaluation analysis. For Supplementary Fig. S26, we designed
and used our free software package to generate Lorenz and
coverage plots and statistics (bam-lorenz-coverage, v2.3.0).
Processed bam files used to estimate general genome cov-
erage statistics were obtained from EGAS00000000052 [56].
Pathway enrichment was performed with g:Profiler web
(https://biit.cs.ut.ee/gprofiler/gost [60]), using gene identifiers
as non-ordered query. For differential expression analysis, the
annotation of the results of Dr. Disco, and further integration
with gene sets for determining intergenic status, Ensembl 89
was used.

Plots were made with base R (3.6.3), ggplot2 (3.3.5), plotrix
(3.8.1), and circlize (0.4.13), and illustrations, with Inkscape
(0.92.4). Differential gene expression analysis was performed us-
ing edgeR (3.28.1) [61]. Associations between the frequency of
breakpoints per sample and clinical parameters were tested us-
ing the Mann-Whitney U test in R.

For the Venn diagrams describing overlap across intronic,
exonic, and WGS junctions (Fig. 3A), both sides of the junc-
tions must be within 40 genomic nucleotides in proximity to
be considered a match. Head-to-tail junctions and junctions to
alternate loci were excluded. For the comparison of BrCa WGS
and rRNA-minus results (Fig. 4), interchromosomal entries were
compared to avoid an unfair comparison due to (i) small WGS in-
dels detected on the basis of non-split reads and (ii) transcripts
unrelated to genomic rearrangements such as read-throughs or
circRNAs.

Chromosomal differential expression plots (Fig. 8) were made
using base R. For a given locus and q-value threshold, a cohort
is separated in a mutant and wild-type group by having 1 or
more intronic or exonic junctions within the given locus. Dif-
ferential expression analysis is performed across these groups
using edgeR. Every gene located on the chromosome on which
the locus is located is plotted with its genomic center as de-
fined by Ensembl 89 on the x-axis and with edgeR’s logFC on
the y-axis. A gene that is up-regulated in the mutant group has
a positive logFC change, and a gene that is down-regulated, a
negative logFC. When the gene is not significantly differentially
expressed across the wild-type and mutant group (q-value be-

low predetermined threshold) the gene will be coloured grey. If
the difference is significant, it will be coloured green (up) or red
(down).

Snapshots of discordant alignments were made in IGV (2.8.0)
using the split view and with ”Color alignments by” set to ”read
group.”

Data Availability

Supporting data, including reference data, final results tables,
and chimeric alignments, and an archival copy of the code are
available in the GigaDB database [62]. The results of the evalua-
tion on the ENCODE MCF-7 dataset are given as Supplementary
Table S1 [62].

Availability of Source Code and Requirements
� Project name: Dr. Disco
� Project home page: https://github.com/yhoogstrate/dr-disco
� bio.tools: https://bio.tools/dr disco
� RRID:SCR 021739
� Operating system(s): GNU/Linux
� Programming language: Python
� Other requirements: STAR (aligner)
� License: GNU GPL 3.0

� Project name: bam-lorenz-coverage
� Project home page: https://github.com/yhoogstrate/bam-lor

enz-coverage
� bio.tools: https://bio.tools/bam-lorenz-coverage
� RRID: SCR 021837
� Operating system(s): GNU/Linux
� Programming language: Python
� Other requirements: Python libraries: numpy, pysam, tqdm,

matplotlib & click

Additional Files

Supplementary Dr. Disco Technical Specification
Supplementary Figure S1. Exonic and intronic junctions
Supplementary Figure S2. Snapshot of fusion using cryptic ex-
ons in ENCODE MCF-7 dataset
Supplementary Figure S3. IGV Screenshot of in-exon genomic
breakpoint
Supplementary Figure S4. Junctions in PCa-LINES dataset
Supplementary Figure S5. rRNA-minus RNA-seq and WGS data
intersection BASIS dataset
Supplementary Figure S6. Correlation binned density WGS
breakpoints and rRNA-minus junctions
Supplementary Figure S7. Intrachromosomal junctions in BASIS
dataset
Supplementary Figure S8. Intrerchromosomal junctions in BA-
SIS dataset
Supplementary Figure S9. Intrachromosomal junctions in NGS-
ProToCol prostate dataset
Supplementary Figure S10. Intrachromosomal junctions in
NGS-ProToCol colon dataset
Supplementary Figure S11. Intrachromosomal junctions in
CGGA dataset
Supplementary Figure S12. Correlation RNA-seq depth, WGS
breakpoints, and RNA-seq junctions in BASIS dataset
Supplementary Figure S13. Snapshot cryptic fusion in BrCa
sample PR9608a
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Supplementary Figure S14. Snapshot of intergenic breakpoints
in PCa sample 7046-004-134
Supplementary Figure S15. Chromosomal differential expres-
sion plot of chr11 in BASIS dataset
Supplementary Figure S16. Chromosomal differential expres-
sion plot of EGFR in CGGA dataset
Supplementary Figure S17. Chromothripsis on chr5q in VCaP
Supplementary Figure S18. Catastrophic events on chr17 in BA-
SIS dataset
Supplementary Figure S19. Snapshot of intergenic breakpoints
in TMPRSS2-ERG
Supplementary Figure S20. Detailed overview of junctions in
ERG
Supplementary Figure S21. Detailed overview of junctions in
TMPRSS2
Supplementary Figure S22. Schematic representation of
TMPRSS2-ERG as reciprocal translocation
Supplementary Figure S23. TMPRSS2-ERG in VCaP
Supplementary Figure S24. Schematic overview discordant read
orientations
Supplementary Figure S25. Overlap head-to-tail junctions and
circBase in PCa-LINES dataset
Supplementary Figure S26. Lorenz and coverage plots of rRNA-
minus, poly(A)+, and WGS data
Supplementary Figure S27. (Inter)genic events in WGS
Supplementary Methods
Supplementary Table S1. Results SRR534293
Supplementary Table S2. gProfiler
Supplementary Table S3. SHANK2 and TENM4 related junctions
Supplementary Table S4. TMPRSS2-ERG and related
junctions
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bp: base pairs; BrCa: breast cancer; circRNA: circular RNA; edgeR:
empirical analysis of DGE in R; ER+: estrogen receptor–positive;
FFPE: formalin-fixed paraffin-embedded; IGV: Integrative Ge-
nomics Viewer; logFC: logarithmic fold change; Mb: megabase
pairs; mRNA: messenger RNA (5′ capped, polyadenylated, and
spliced); PCa: prostate cancer; poly(A)+: polyadenylated; pre-
mRNA: RNA that is actively being transcribed by polymerase
(not polyadenylated); rRNA-minus RNA-seq: RNA-seq prepared
such that there is no specific positive selection for poly(A)-tails
while reducing the amount of ribosomal RNA; poly(A)+ RNA-
seq: RNA-seq prepared with a positive selection for poly(A)-
tails; STAR: Spliced Transcripts Alignment to a Reference; WGS:
whole-genome sequencing.
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