447 research outputs found

    Ricci flow for homogeneous compact models of the universe

    Full text link
    Using quaternions, we give a concise derivation of the Ricci tensor for homogeneous spaces with topology of the 3-dimensional sphere. We derive explicit and numerical solutions for the Ricci flow PDE and discuss their properties. In the collapse (or expansion) of these models, the interplay of the various components of the Ricci tensor are studied. We dedicate this paper to honor the work of Josh Goldberg.Comment: 18 pages, 2 figure

    Proton acceleration in analytic reconnecting current sheets

    Get PDF
    Particle acceleration provides an important signature for the magnetic collapse that accompanies a solar flare. Most particle acceleration studies, however, invoke magnetic and electric field models that are analytically convenient rather than solutions of the governing magnetohydrodynamic equations. In this paper a self-consistent magnetic reconnection solution is employed to investigate proton orbits, energy gains, and acceleration timescales for proton acceleration in solar flares. The magnetic field configuration is derived from the analytic reconnection solution of Craig and Henton. For the physically realistic case in which magnetic pressure of the current sheet is limited at small resistivities, the model contains a single free parameter that specifies the shear of the velocity field. It is shown that in the absence of losses, the field produces particle acceleration spectra characteristic of magnetic X-points. Specifically, the energy distribution approximates a power law ~Ī¾-3/2 nonrelativistically, but steepens slightly at the higher energies. Using realistic values of the ā€œeffectiveā€ resistivity, we obtain energies and acceleration times that fall within the range of observational data for proton acceleration in the solar corona

    UV-induced ligand exchange in MHC class I protein crystals

    Get PDF
    High-throughput structure determination of proteināˆ’ligand complexes is central in drug development and structural proteomics. To facilitate such high-throughput structure determination we designed an induced replacement strategy. Crystals of a protein complex bound to a photosensitive ligand are exposed to UV light, inducing the departure of the bound ligand, allowing a new ligand to soak in. We exemplify the approach for a class of protein complexes that is especially recalcitrant to high-throughput strategies: the MHC class I proteins. We developed a UV-sensitive, ā€œconditionalā€, peptide ligand whose UV-induced cleavage in the crystals leads to the exchange of the low-affinity lytic fragments for full-length peptides introduced in the crystallant solution. This ā€œin crystalloā€ exchange is monitored by the loss of seleno-methionine anomalous diffraction signal of the conditional peptide compared to the signal of labeled MHC Ī²2m subunit. This method has the potential to facilitate high-throughput crystallography in various protein families

    Comprehensive Genetic Landscape of Uveal Melanoma by Whole-Genome Sequencing.

    Get PDF
    Uveal melanoma (UM) is a rare intraocular tumor that, similar to cutaneous melanoma, originates from melanocytes. To gain insights into its genetics, we performed whole-genome sequencing at very deep coverage of tumor-control pairs in 33 samples (24 primary and 9 metastases). Genome-wide, the number of coding mutations was rather low (only 17 variants per tumor on average; range 7-28), thus radically different from cutaneous melanoma, where hundreds of exonic DNA insults are usually detected. Furthermore, no UV light-induced mutational signature was identified. Recurrent coding mutations were found in the known UM drivers GNAQ, GNA11, BAP1, EIF1AX, and SF3B1. Other genes, i.e., TP53BP1, CSMD1, TTC28, DLK2, and KTN1, were also found to harbor somatic mutations in more than one individual, possibly indicating a previously undescribed association with UM pathogenesis. De novo assembly of unmatched reads from non-coding DNA revealed peculiar copy-number variations defining specific UM subtypes, which in turn could be associated with metastatic transformation. Mutational-driven comparison with other tumor types showed that UM is very similar to pediatric tumors, characterized by very few somatic insults and, possibly, important epigenetic changes. Through the analysis of whole-genome sequencing data, our findings shed new light on the molecular genetics of uveal melanoma, delineating it as an atypical tumor of the adult for which somatic events other than mutations in exonic DNA shape its genetic landscape and define its metastatic potential

    Vaccination with LAG-3Ig (IMP321) and Peptides Induces Specific CD4 and CD8 T-Cell Responses in Metastatic Melanoma Patients-Report of a Phase I/IIa Clinical Trial.

    Get PDF
    PURPOSE: Cancer vaccines aim to generate and maintain antitumor immune responses. We designed a phase I/IIa clinical trial to test a vaccine formulation composed of Montanide ISA-51 (Incomplete Freund's Adjuvant), LAG-3Ig (IMP321, a non-Toll like Receptor agonist with adjuvant properties), and five synthetic peptides derived from tumor-associated antigens (four short 9/10-mers targeting CD8 T-cells, and one longer 15-mer targeting CD4 T-cells). Primary endpoints were safety and T-cell responses. EXPERIMENTAL DESIGN: Sixteen metastatic melanoma patients received serial vaccinations. Up to nine injections were subcutaneously administered in three cycles, each with three vaccinations every 3 weeks, with 6 to 14 weeks interval between cycles. Blood samples were collected at baseline, 1-week after the third, sixth and ninth vaccination, and 6 months after the last vaccination. Circulating T-cells were monitored by tetramer staining directly ex vivo, and by combinatorial tetramer and cytokine staining on in vitro stimulated cells. RESULTS: Side effects were mild to moderate, comparable to vaccines with Montanide alone. Specific CD8 T-cell responses to at least one peptide formulated in the vaccine preparation were found in 13 of 16 patients. However, two of the four short peptides of the vaccine formulation did not elicit CD8 T-cell responses. Specific CD4 T-cell responses were found in all 16 patients. CONCLUSIONS: We conclude that vaccination with IMP321 is a promising and safe strategy for inducing sustained immune responses, encouraging further development for cancer vaccines as components of combination therapies. Clin Cancer Res; 22(6); 1330-40. Ā©2015 AACR

    Multifunctionality of chiton biomineralized armor with an integrated visual system

    Get PDF
    Nature provides a multitude of examples of multifunctional structural materials in which trade-offs are imposed by conflicting functional requirements. One such example is the biomineralized armor of the chiton Acanthopleura granulata, which incorporates an integrated sensory system that includes hundreds of eyes with aragonite-based lenses. We use optical experiments to demonstrate that these microscopic lenses are able to form images. Light scattering by the polycrystalline lenses is minimized by the use of relatively large, crystallographically aligned grains. Multiscale mechanical testing reveals that as the size, complexity, and functionality of the integrated sensory elements increase, the local mechanical performance of the armor decreases. However, A. granulata has evolved several strategies to compensate for its mechanical vulnerabilities to form a multipurpose system with co-optimized optical and structural functions.Engineering and Applied Science

    Analogue peptides for the immunotherapy of human acute myeloid leukemia

    Get PDF
    Accepted manuscript. The final publication is available at: http://link.springer.com/article/10.1007%2Fs00262-015-1762-9The use of peptide vaccines, enhanced by adjuvants, has shown some efficacy in clinical trials. However, responses are often short-lived and rarely induce notable memory responses. The reason is that self-antigens have already been presented to the immune system as the tumor develops, leading to tolerance or some degree of host tumor cell destruction. To try to break tolerance against self-antigens, one of the methods employed has been to modify peptides at the anchor residues to enhance their ability to bind major histocompatibility complex molecules, extending their exposure to the T-cell receptor. These modified or analogue peptides have been investigated as stimulators of the immune system in patients with different cancers with variable but sometimes notable success. In this review we describe the background and recent developments in the use of analogue peptides for the immunotherapy of acute myeloid leukemia describing knowledge useful for the application of analogue peptide treatments for other malignancies

    Pitfalls of vaccinations with WT1-, Proteinase3- and MUC1-derived peptides in combination with MontanideISA51 and CpG7909

    Get PDF
    T cells with specificity for antigens derived from Wilms Tumor gene (WT1), Proteinase3 (Pr3), and mucin1 (MUC1) have been demonstrated to lyse acute myeloid leukemia (AML) blasts and multiple-myeloma (MM) cells, and strategies to enhance or induce such tumor-specific T cells by vaccination are currently being explored in multiple clinical trials. To test safety and immunogenicity of a vaccine composed of WT1-, Pr3-, and MUC1-derived Class I-restricted peptides and the pan HLA-DR T helper cell epitope (PADRE) or MUC1-helper epitopes in combination with CpG7909 and MontanideISA51, four patients with AML and five with MM were repetitively vaccinated. No clinical responses were observed. Neither pre-existing nor naive WT1-/Pr3-/MUC1-specific CD8+ T cells expanded in vivo by vaccination. In contrast, a significant decline in vaccine-specific CD8+ T cells was observed. An increase in PADRE-specific CD4+ T helper cells was observed after vaccination but these appeared unable to produce IL2, and CD4+ T cells with a regulatory phenotype increased. Taken into considerations that multiple clinical trials with identical antigens but different adjuvants induced vaccine-specific T cell responses, our data caution that a vaccination with leukemia-associated antigens can be detrimental when combined with MontanideISA51 and CpG7909. Reflecting the time-consuming efforts of clinical trials and the fact that 1/3 of ongoing peptide vaccination trails use CpG and/or Montanide, our data need to be taken into consideration

    Electron acceleration and heating in collisionless magnetic reconnection

    Get PDF
    We discuss electron acceleration and heating during collisionless magnetic reconnection by using the results of implicit kinetic simulations of Harris current sheets. We consider and compare electron dynamics in plasmas with different \beta values and perform simulations up to the physical mass ratio. We analyze the typical trajectory of electrons passing through the reconnection region, we study the electron velocity, focusing on the out-of-plane velocity, and we discuss the electron heating along the in-plane and out-of-plane directions

    Detection of Intra-Tumor Self Antigen Recognition during Melanoma Tumor Progression in Mice Using Advanced Multimode Confocal/Two Photon Microscope

    Get PDF
    Determining how tumor immunity is regulated requires understanding the extent to which the anti-tumor immune response ā€œfunctionsā€ in vivo without therapeutic intervention. To better understand this question, we developed advanced multimodal reflectance confocal/two photon fluorescence intra-vital imaging techniques to use in combination with traditional ex vivo analysis of tumor specific T cells. By transferring small numbers of melanoma-specific CD8+ T cells (Pmel-1), in an attempt to mimic physiologic conditions, we found that B16 tumor growth alone was sufficient to induce naive Pmel-1 T cell proliferation and acquisition of effector phenotype. Tumor -primed Pmel-1 T cells, are capable of killing target cells in the periphery and secrete IFNĪ³, but are unable to mediate tumor regression. Within the tumor, Pmel-1 T cells have highly confined mobility, displaying long term interactions with tumor cells. In contrast, adoptively transferred non tumor-specific OT-I T cells show neither confined mobility, nor long term interaction with B16 tumor cells, suggesting that intra-tumor recognition of cognate self antigen by Pmel-1 T cells occurs during tumor growth. Together, these data indicate that lack of anti-tumor efficacy is not solely due to ignorance of self antigen in the tumor microenvironment but rather to active immunosuppressive influences preventing a protective immune response
    • ā€¦
    corecore