38 research outputs found

    A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data

    Get PDF
    This is the first quantitative attempt at a global areal definition of ‘alpine' and ‘montane' terrain by combining geographical information systems for topography with bioclimatic criteria (temperature) subdividing the life zones along elevational gradients. The mountain definition adopted here refrains from any truncation by low elevation thresholds, and defines the world's mountains by a common ruggedness threshold (>200m difference in elevation within a 2.5â€Č cell, 0.5â€Č resolution), arriving at 16.5Mio km2 or 12.3% of all terrestrial land area outside Antartica being mountains. The model employed accounts for criteria of "mountainous terrain” for biological analysis, and thus arrives at a smaller land area fraction than hydrologically oriented approaches, and by its 2.5â€Č resolution, it includes less unstructured terrain (such as large plateaus, very wide valleys or basins) than earlier approaches. The thermal delineation of the alpine and nival biogeographic region by the climatic tree limit (the lower boundary of the alpine belt) arrives at 2.6% or 3.55Mio km2 of the global land area outside Antarctica (21.5% of all mountain terrain). Seven climate-defined life zones in mountains facilitate large-scale (global) comparisons of biodiversity information as used in the new electronic ‘Mountain Biodiversity Portal' of the Global Mountain Biodiversity Assessment (GMBA

    Nature and People in the Andes, East African Mountains, European Alps, and Hindu Kush Himalaya: Current Research and Future Directions

    Get PDF
    Mountains are facing growing environmental, social, and economic challenges. Accordingly, effective policies and management approaches are needed to safeguard their inhabitants, their ecosystems, their biodiversity, and the livelihoods they support. The formulation and implementation of such policies and approaches requires a thorough understanding of, and extensive knowledge about, the interactions between nature and people particular to mountain social–ecological systems. Here, we applied the conceptual framework of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services to assess and compare the contents of 631 abstracts on the interactions among biodiversity, ecosystem services, human wellbeing, and drivers of change, and formulate a set of research recommendations. Our comparative assessment of literature pertained to the Andes, the East African mountains, the European Alps, and the Hindu Kush Himalaya. It revealed interesting differences between mountain systems, in particular in the relative importance given in the literature to individual drivers of change and to the ecosystem services delivered along elevational gradients. Based on our analysis and with reference to alternative conceptual frameworks of mountain social–ecological systems, we propose future research directions and options. In particular, we recommend improving biodiversity information, generating spatially explicit knowledge on ecosystem services, integrating knowledge and action along elevational gradients, generating knowledge on interacting effects of global change drivers, delivering knowledge that is relevant for transformative action toward sustainable mountain development, and using comprehensive concepts and codesigned approaches to effectively address knowledge gaps

    Introduction: Mountains of Our Future Earth—Perth 2015

    Get PDF
    From 5 to 8 October 2015, 400 people from 52 countries on 6 continents attended the international conference “Mountains of Our Future Earth” in Perth, Scotland. The event was organized by the United Nations Educational, Scientific and Cultural Organization (UNESCO) Chair in sustainable development at the Centre for Mountain Studies (CMS) at Perth College, University of the Highlands and Islands, together with 2 global organizations: the Mountain Research Initiative (MRI) and the Global Mountain Biodiversity Assessment (GMBA). This editorial introduces the conference and the papers in this special issue, which are based on presentations given during the conference. The present issue of MRD concludes with an evaluation of the conference and consequent recommendations for future research

    Gene drives: benefits, risks, and possible applications

    Full text link
    Gene drives are genetic elements in sexually reproducing organisms that skew the pattern of inheritance of a given characteristic. They can be used to spread a characteristic that can alter or even reduce the numbers of individuals in wild populations of a certain species. As they spread by being inherited from one generation to the next, they could persist in populations long-term. The spreading property of gene drives could be a source of great potential in areas as diverse as the control of disease vectors, invasive species, agricultural pests and predators of endangered species. However, the same property may make containment challenging and therefore may also pose novel envi- ronmental risks. The evaluation, distribution of risks and benefits and the fact that gene drives may be seen as a particularly profound interference with nature further raises novel ethical considerations

    A hierarchical inventory of the world's mountains for global comparative mountain science.

    Get PDF
    A standardized delineation of the world's mountains has many applications in research, education, and the science-policy interface. Here we provide a new inventory of 8616 mountain ranges developed under the auspices of the Global Mountain Biodiversity Assessment (GMBA). Building on an earlier compilation, the presented geospatial database uses a further advanced and generalized mountain definition and a semi-automated method to enable globally standardized, transparent delineations of mountain ranges worldwide. The inventory is presented on EarthEnv at various hierarchical levels and allows users to select their preferred level of regional aggregation from continents to small subranges according to their needs and the scale of their analyses. The clearly defined, globally consistent and hierarchical nature of the presented mountain inventory offers a standardized resource for referencing and addressing mountains across basic and applied natural as well as social sciences and a range of other uses in science communication and education

    A global inventory of mountains for bio-geographical applications

    Get PDF
    Mountains are hotspots of biodiversity. Yet, evaluating their importance in global biodiversity inventories requires the adoption of a pertinent definition of mountains. Here, we first compare the well-established WCMC and GMBA definitions, which both use geographical information systems. We show that the WCMC approach arrives at twice the global mountain area and much higher human population numbers than the GMBA one, which is explained by the inclusion of (mostly) low latitude hill country below 600 m elevation. We then present an inventory of the world’s mountains based on the GMBA definition. In this inventory, each of the 1003 entries corresponds to a polygon drawn around a mountain or a mountain range and includes the name of the delineated object, the area of mountainous terrain it covers stratified into different bioclimatic belts (all at 2.5â€Č resolution), and demographic information. Taken together, the 1003 polygons cover 13.8 Mio km2 of mountain terrain, of which 3.3 Mio km2 are in the alpine and nival belts. This corresponds to 83.7% of the global mountain area sensu GMBA, and 94% of the alpine/nival area. The 386 Mio people inhabiting mountainous terrain within polygons represent 75% of the people globally inhabiting mountains sensu GMBA. This inventory offers a robust framework for the integration of mountain biota in regional and larger scale biodiversity assessments, for biogeography, bioclimatology, macroecology, and conservation research, and for the exploration of a multitude of socio-ecological and climate change-related research questions in mountain biota, including the potential pressure on alpine ecosystems

    Creative Use of Mountain Biodiversity Databases: The Kazbegi Research Agenda of GMBA-DIVERSITAS

    Get PDF
    Geo-referenced archive databases on mountain organisms are very promising tools for achieving a better understanding of mountain biodiversity and predicting its changes. The Global Mountain Biodiversity Assessment (GMBA) of DIVERSITAS, in cooperation with the Global Biodiversity Information Facility, encourages a global effort to mine biodiversity databases on mountain organisms. The wide range of climatic conditions and topographies across the world's mountains offers an unparalleled opportunity for developing and testing biodiversity theory. The power of openly accessible, interconnected electronic databases for scientific biodiversity research, which by far exceeds the original intent of archiving for mainly taxonomic purposes, has been illustrated. There is an urgent need to increase the amount and quality of geo-referenced data on mountain biodiversity provided online, in order to meet the challenges of global change in mountains

    Science journalism and a multi-directional science-policy-society dialogue are needed to foster public awareness for biodiversity and its conservation

    Get PDF
    Biodiversity is the manifestation of life on our planet and provides manifold benefits for humans. Yet we destroy ecosystems and drive species to extinction. We submit that anthropogenic biodiversity loss does not yet receive sufficient public attention, although biodiversity conservation and its sustainable use are key to mitigate global crises. Effective communication of biodiversity-related knowledge with diverse audiences is therefore crucial and should contribute to ensuring that evidence guides environmental decision-making. In this context, it is essential to stimulate multi-directional dialogues between science, policy, and society. Here, we suggest Dos and Don’ts that can guide science communication for scientists working in biodiversity research and beyond. Moreover, we emphasize the role of science journalism and other institutions specialized in science communication in critically mediating the complexity of scientific knowledge

    Co-production of knowledge and sustainability transformations: a strategic compass for global research networks

    Get PDF
    An increasing number of voices highlight the need for science itself to transform and to engage in the co-production of knowledge and action, in order to enable the fundamental transformations needed to advance towards sustainable futures. But how can global sustainability-oriented research networks engage in co-production of knowledge and action? The present article introduces a strategic tool called the ‘network compass’ which highlights four generic, interrelated fields of action through which networks can strive to foster co-production. It is based on the networks’ particular functions and how these can be engaged for co-production processes. This tool aims to foster self-reflection and learning within and between networks in the process of (re)developing strategies and activity plans and effectively contributing to sustainability transformations

    Mit BiodiversiÀt die SDGs erreichen

    Get PDF
    Die Agenda 2030 fĂŒr nachhaltige Entwicklung mit den darin enthaltenen 17 globalen Zielen fĂŒr nachhaltige Entwicklung (Sustainable Development Goals SDGs) zeigt einen neuen Weg des Gleichgewichts fĂŒr die Menschheit und den Planeten auf. Die SDGs sind stark miteinander verknĂŒpft. Deshalb werden sie in ihrer Gesamtheit nur durch transformativen Wandel unserer Gesellschaften erreicht werden können. Neuere Studien zu den Wechselwirkungen zwischen den SDGs haben den Erhalt der BiodiversitĂ€t als einen der stĂ€rksten Hebel zur Erreichung von Nachhaltigkeit identifiziert. Die auf BiodiversitĂ€t fokussierten SDGs 14 (Leben unter Wasser) und 15 (Leben an Land) zeigen eine ausgesprochen positive Wirkung, einen Zusatznutzen, auf die Erreichung anderer Ziele. Dieses Faktenblatt erlĂ€utert die Bedeutung der BiodiversitĂ€t und zeigt Optionen fĂŒr EntscheidungstrĂ€ger auf, welche Ansatzpunkte fĂŒr transformativen Wandel genutzt werden können
    corecore