3,529 research outputs found

    Optical constants of silicon carbide for astrophysical applications. II. Extending optical functions from IR to UV using single-crystal absorption spectra

    Get PDF
    Laboratory measurements of unpolarized and polarized absorption spectra of various samples and crystal stuctures of silicon carbide (SiC) are presented from 1200--35,000 cm−1^{-1} (λ∼\lambda \sim 8--0.28 μ\mum) and used to improve the accuracy of optical functions (nn and kk) from the infrared (IR) to the ultraviolet (UV). Comparison with previous λ∼\lambda \sim 6--20 μ\mum thin-film spectra constrains the thickness of the films and verifies that recent IR reflectivity data provide correct values for kk in the IR region. We extract nn and kk needed for radiative transfer models using a new ``difference method'', which utilizes transmission spectra measured from two SiC single-crystals with different thicknesses. This method is ideal for near-IR to visible regions where absorbance and reflectance are low and can be applied to any material. Comparing our results with previous UV measurements of SiC, we distinguish between chemical and structural effects at high frequency. We find that for all spectral regions, 3C (β\beta-SiC) and the E⃗⊥c⃗\vec{E}\bot \vec{c} polarization of 6H (a type of α\alpha-SiC) have almost identical optical functions that can be substituted for each other in modeling astronomical environments. Optical functions for E⃗∥c⃗\vec{E} \| \vec{c} of 6H SiC have peaks shifted to lower frequency, permitting identification of this structure below λ∼4μ\lambda \sim4\mum. The onset of strong UV absorption for pure SiC occurs near 0.2 μ\mum, but the presence of impurities redshifts the rise to 0.33 μ\mum. Optical functions are similarly impacted. Such large differences in spectral characteristics due to structural and chemical effects should be observable and provide a means to distinguish chemical variation of SiC dust in space.Comment: 46 pages inc. 8 figures and 2 full tables. Also 6 electronic-only data files. Accepted by Ap

    The SiC problem: astronomical and meteoritic evidence

    Get PDF
    Pre-solar grains of silicon carbide found in meteorites and interpreted as having had an origin around carbon stars from their isotopic composition, have all been found to be of the beta-SiC polytype. Yet to date fits to the 11.3 microns SiC emission band of carbon stars had been obtained only for alpha-SiC grains. We present thin film infrared (IR) absorption spectra measured in a diamond anvil cell for both the alpha- and beta- polymorphs of synthetic SiC and compare the results with previously published spectra taken using the KBr matrix method. We find that our thin film spectra have positions nearly identical to those obtained previously from finely ground samples in KBr. Hence, we show that this discrepancy has arisen from inappropriate `KBr corrections' having been made to laboratory spectra of SiC particles dispersed in KBr matrices. We re-fit a sample of carbon star mid-IR spectra, using laboratory data with no KBr correction applied, and show that beta-SiC grains fit the observations, while alpha-SiC grains do not. The discrepancy between meteoritic and astronomical identifications of the SiC-type is therefore removed. This work shows that the diamond anvil cell thin film method can be used to produce mineral spectra applicable to cosmic environments without further manipulation.Comment: to be published in Astrophysical Journal Letter 4 pages, 3 figure

    Optical properties of silicon carbide for astrophysical applications I. New laboratory infrared reflectance spectra and optical constants

    Full text link
    Silicon Carbide (SiC) optical constants are fundamental inputs for radiative transfer models of astrophysical dust environments. However, previously published values contain errors and do not adequately represent the bulk physical properties of the cubic (beta) SiC polytype usually found around carbon stars. We provide new, uncompromised optical constants for beta- and alpha-SiC derived from single-crystal reflectance spectra and investigate quantitatively whether there is any difference between alpha- and beta-SiC that can be seen in infrared spectra and optical functions. Previous optical constants for SiC do not reflect the true bulk properties, and they are only valid for a narrow grain size range. The new optical constants presented here will allow narrow constraints to be placed on the grain size and shape distribution that dominate in astrophysical environments. In addition, our calculated absorption coefficients are much higher than laboratory measurements, which has an impact on the use of previous data to constrain abundances of these dust grains.Comment: 12 pages; 10 figures; laboratory optical constants available from CDS. Accepted by Astronomy & Astrophysic

    Characterizing Potentials by a Generalized Boltzmann Factor

    Full text link
    Based on the concept of a nonequilibrium steady state, we present a novel method to experimentally determine energy landscapes acting on colloidal systems. By measuring the stationary probability distribution and the current in the system, we explore potential landscapes with barriers up to several hundred \kT. As an illustration, we use this approach to measure the effective diffusion coefficient of a colloidal particle moving in a tilted potential

    On the hyperbolicity and causality of the relativistic Euler system under the kinetic equation of state

    Full text link
    We show that a pair of conjectures raised in [11] concerning the construction of normal solutions to the relativistic Boltzmann equation are valid. This ensures that the results in [11] hold for any range of positive temperatures and that the relativistic Euler system under the kinetic equation of state is hyperbolic and the speed of sound cannot overcome c/3c/\sqrt{3}.Comment: 6 pages. Abridged version; full version to appear in Commun. Pure Appl. Ana

    Measurement of Stochastic Entropy Production

    Full text link
    Using fluorescence spectroscopy we directly measure entropy production of a single two-level system realized experimentally as an optically driven defect center in diamond. We exploit a recent suggestion to define entropy on the level of a single stochastic trajectory (Seifert, Phys. Rev. Lett. {\bf 95}, 040602 (2005)). Entropy production can then be split into one of the system itself and one of the surrounding medium. We demonstrate that the total entropy production obeys various exact relations for finite time trajectories.Comment: Phys. Rev. Lett., in pres
    • …
    corecore