research

Optical constants of silicon carbide for astrophysical applications. II. Extending optical functions from IR to UV using single-crystal absorption spectra

Abstract

Laboratory measurements of unpolarized and polarized absorption spectra of various samples and crystal stuctures of silicon carbide (SiC) are presented from 1200--35,000 cm1^{-1} (λ\lambda \sim 8--0.28 μ\mum) and used to improve the accuracy of optical functions (nn and kk) from the infrared (IR) to the ultraviolet (UV). Comparison with previous λ\lambda \sim 6--20 μ\mum thin-film spectra constrains the thickness of the films and verifies that recent IR reflectivity data provide correct values for kk in the IR region. We extract nn and kk needed for radiative transfer models using a new ``difference method'', which utilizes transmission spectra measured from two SiC single-crystals with different thicknesses. This method is ideal for near-IR to visible regions where absorbance and reflectance are low and can be applied to any material. Comparing our results with previous UV measurements of SiC, we distinguish between chemical and structural effects at high frequency. We find that for all spectral regions, 3C (β\beta-SiC) and the Ec\vec{E}\bot \vec{c} polarization of 6H (a type of α\alpha-SiC) have almost identical optical functions that can be substituted for each other in modeling astronomical environments. Optical functions for Ec\vec{E} \| \vec{c} of 6H SiC have peaks shifted to lower frequency, permitting identification of this structure below λ4μ\lambda \sim4\mum. The onset of strong UV absorption for pure SiC occurs near 0.2 μ\mum, but the presence of impurities redshifts the rise to 0.33 μ\mum. Optical functions are similarly impacted. Such large differences in spectral characteristics due to structural and chemical effects should be observable and provide a means to distinguish chemical variation of SiC dust in space.Comment: 46 pages inc. 8 figures and 2 full tables. Also 6 electronic-only data files. Accepted by Ap

    Similar works