391 research outputs found
In vacancies in InN grown by plasma-assisted molecular beam epitaxy
The authors have applied positron annihilation spectroscopy to study the
effect of different growth conditions on vacancy formation in In- and N-polar
InN grown by plasma-assisted molecular beam epitaxy. The results suggest that
the structural quality of the material and limited diffusion of surface adatoms
during growth dictate the In vacancy formation in low electron-density undoped
epitaxial InN, while growth conditions and thermodynamics have a less important
role, contrary to what is observed in, e.g., GaN. Further, the results imply
that in high quality InN, the electron mobility is likely limited not by
ionized point defect scattering, but rather by threading dislocations.Comment: 15 pages, 2 figure
Localization landscape theory of disorder in semiconductors. III. Application to carrier transport and recombination in light emitting diodes
This paper introduces a novel method to account for quantum disorder effects
into the classical drift-diffusion model of semiconductor transport through the
localization landscape theory. Quantum confinement and quantum tunneling in the
disordered system change dramatically the energy barriers acting on the
perpendicular transport of heterostructures. In addition they lead to
percolative transport through paths of minimal energy in the 2D landscape of
disordered energies of multiple 2D quantum wells. This model solves the carrier
dynamics with quantum effects self-consistently and provides a computationally
much faster solver when compared with the Schr\"odinger equation resolution.
The theory also provides a good approximation to the density of states for the
disordered system over the full range of energies required to account for
transport at room-temperature. The current-voltage characteristics modeled by
3-D simulation of a full nitride-based light-emitting diode (LED) structure
with compositional material fluctuations closely match the experimental
behavior of high quality blue LEDs. The model allows also a fine analysis of
the quantum effects involved in carrier transport through such complex
heterostructures. Finally, details of carrier population and recombination in
the different quantum wells are given.Comment: 14 pages, 16 figures, 6 table
Fabrication technology for high light-extraction ultraviolet thin-film flip-chip (UV TFFC) LEDs grown on SiC
The light output of deep ultraviolet (UV-C) AlGaN light-emitting diodes
(LEDs) is limited due to their poor light extraction efficiency (LEE). To
improve the LEE of AlGaN LEDs, we developed a fabrication technology to process
AlGaN LEDs grown on SiC into thin-film flip-chip LEDs (TFFC LEDs) with high
LEE. This process transfers the AlGaN LED epi onto a new substrate by
wafer-to-wafer bonding, and by removing the absorbing SiC substrate with a
highly selective SF6 plasma etch that stops at the AlN buffer layer. We
optimized the inductively coupled plasma (ICP) SF6 etch parameters to develop a
substrate-removal process with high reliability and precise epitaxial control,
without creating micromasking defects or degrading the health of the plasma
etching system. The SiC etch rate by SF6 plasma was ~46 \mu m/hr at a high RF
bias (400 W), and ~7 \mu m/hr at a low RF bias (49 W) with very high etch
selectivity between SiC and AlN. The high SF6 etch selectivity between SiC and
AlN was essential for removing the SiC substrate and exposing a pristine,
smooth AlN surface. We demonstrated the epi-transfer process by fabricating
high light extraction TFFC LEDs from AlGaN LEDs grown on SiC. To further
enhance the light extraction, the exposed N-face AlN was anisotropically etched
in dilute KOH. The LEE of the AlGaN LED improved by ~3X after KOH roughening at
room temperature. This AlGaN TFFC LED process establishes a viable path to high
external quantum efficiency (EQE) and power conversion efficiency (PCE) UV-C
LEDs.Comment: 22 pages, 6 figures. (accepted in Semiconductor Science and
Technology, SST-105156.R1 2018
Polarization-Resolved Near-Field Spectroscopy of Localized States in m-Plane InxGa1−xN/GaN Quantum Wells
Producción CientíficaWe present a polarization, spectrally, and spatially resolved near-field photoluminescence (PL) measurement technique and apply it to the study of wide m-plane InxGa1−xN/GaN quantum wells grown on on-axis and miscut GaN substrates. It is found that PL originates from localized states; nevertheless, its degree of linear polarization (DLP) is high with little spatial variation. This allows an unambiguous assignment of the localized states to InxGa1−xN composition-related band potential fluctuations. Spatial PL variations, occurring due to morphology features of the on-axis samples, play a secondary role compared to the variations of the alloy composition. The large PL peak wavelength difference for polarizations parallel and perpendicular to the c axis, the weak correlation between the peak PL wavelength and the DLP, and the temperature dependence of the DLP suggest that effective potential variations and the hole mass in the second valence-band level are considerably smaller than that for the first level. DLP maps for the long wavelength PL tails have revealed well-defined regions with a small DLP, which have been attributed to a partial strain relaxation around dislocations.Swedish Energy Agency (Contract No. 36652-1)Swedish Research Council (Contract No. 621-2013- 4096
Recommended from our members
Interplay of Cavity Thickness and Metal Absorption in Thin-film InGaN Photonic Crystal Light-emitting Diodes
Thin-film InGaN photonic crystal (PhC) light-emitting diodes (LEDs) with a total semiconductor thickness of either 800 nm or 3.45 μm were fabricated and characterized. Increased directional radiance relative to Lambertian emission was observed for both cases. The 800-nm-thick PhC LEDs yielded only a slight improvement in total light output over the 3.45-μm-thick PhC LEDs. Simulations indicate that, except for ultrathin devices well below 800 nm, the balance between PhC extraction and metal absorption at the backside mirror results in modal extraction efficiencies that are almost independent of device thickness, but highly dependent on mirror reflectivity.Engineering and Applied Science
Magnetotransport properties of a polarization-doped three-dimensional electron slab
We present evidence of strong Shubnikov-de-Haas magnetoresistance
oscillations in a polarization-doped degenerate three-dimensional electron slab
in an AlGaN semiconductor system. The degenerate free carriers
are generated by a novel technique by grading a polar alloy semiconductor with
spatially changing polarization. Analysis of the magnetotransport data enables
us to extract an effective mass of and a quantum
scattering time of . Analysis of scattering processes helps
us extract an alloy scattering parameter for the AlGaN material
system to be
Thermally enhanced blue light-emitting diode
We investigate thermoelectric pumping in wide-bandgap GaN based light-emitting diodes (LEDs) to take advantage of high junction temperature rather than avoiding the problem of temperature-induced efficiency droop through external cooling. We experimentally demonstrate a thermally enhanced 450 nm GaN LED, in which nearly fourfold light output power is achieved at 615 K (compared to 295 K room temperature operation), with nearly no reduction in the wall-plug efficiency (i.e., electrical-optical energy conversion efficiency) at bias V< ℏ ω/q. The LED is shown to work in a mode similar to a thermodynamic heat engine operating with charged carriers pumped into the active region by a combination of electrical work and Peltier heat (phonons) drawn from the lattice. In this optimal operating regime at 615 K, the LED injection current (3.26 A/cm[superscript 2]) is of similar magnitude to the operating point of common high power GaN based LEDs (5–35 A/cm[superscript 2]). This result suggests the possibility of removing bulky heat sinks in current high power LED products thus realizing a significant cost reduction for solid-state lighting.Bose (Firm)Singapore. Agency for Science, Technology and Researc
- …