423 research outputs found

    Preface and Symposium Program

    Get PDF

    Title Page

    Get PDF

    Special Issue School-to-Prison Pipeline

    Get PDF

    The On-Freezing Phenomenon: Cognitive and Behavioral Aspects

    Get PDF
    Freezing of gait is a warning sign of Parkinson's disease. One could distinguish off-freezing, which is associated with dopaminergic therapy and to its titration, and it is clinically related to wearing-off phenomenon. Differently, the on-freezing phenomenon seems to be related to a neural disruption of the frontal-parietal-basal ganglia-pontine projections; clinically, it does not respond to therapy modifications or to different drug titration. In a group of patients with on-freezing, we have detected an alteration of focusing attention, an impairment of set-shifting, in addition to poor abstract reasoning and a reduction of planning. These aspects have been even more evident, when compared with the results obtained by a group of PD patients, without freezing

    Continuous quantum nondemolition feedback and unconditional atomic spin squeezing

    Get PDF
    We discuss the theory and experimental considerations of a quantum feedback scheme for producing deterministically reproducible spin squeezing. Continuous nondemolition atom number measurement from monitoring a probe field conditionally squeezes the sample. Simultaneous feedback of the measurement results controls the quantum state such that the squeezing becomes unconditional. We find that for very strong cavity coupling and a limited number of atoms, the theoretical squeezing approaches the Heisenberg limit. Strong squeezing will still be produced at weaker coupling and even in free space (thus presenting a simple experimental test for quantum feedback). The measurement and feedback can be stopped at any time, thereby freezing the sample with a desired amount of squeezing.Comment: 17 pages, 5 figures, submitted to JP

    Quantum Revivals in a Periodically Driven Gravitational Cavity

    Get PDF
    Quantum revivals are investigated for the dynamics of an atom in a driven gravitational cavity. It is demonstrated that the external driving field influences the revival time significantly. Analytical expressions are presented which are based on second order perturbation theory and semiclassical secular theory. These analytical results explain the dependence of the revival time on the characteristic parameters of the problem quantitatively in a simple way. They are in excellent agreement with numerical results
    • 

    corecore