62 research outputs found

    Viral Paratransgenesis in the Malaria Vector Anopheles gambiae

    Get PDF
    Paratransgenesis, the genetic manipulation of insect symbiotic microorganisms, is being considered as a potential method to control vector-borne diseases such as malaria. The feasibility of paratransgenic malaria control has been hampered by the lack of candidate symbiotic microorganisms for the major vector Anopheles gambiae. In other systems, densonucleosis viruses (DNVs) are attractive agents for viral paratransgenesis because they infect important vector insects, can be genetically manipulated and are transmitted to subsequent generations. However, An. gambiae has been shown to be refractory to DNV dissemination. We discovered, cloned and characterized the first known DNV (AgDNV) capable of infection and dissemination in An. gambiae. We developed a flexible AgDNV-based expression vector to express any gene of interest in An. gambiae using a two-plasmid helper-transducer system. To demonstrate proof-of-concept of the viral paratransgenesis strategy, we used this system to transduce expression of an exogenous gene (enhanced green fluorescent protein; EGFP) in An. gambiae mosquitoes. Wild-type and EGFP-transducing AgDNV virions were highly infectious to An. gambiae larvae, disseminated to and expressed EGFP in epidemiologically relevant adult tissues such as midgut, fat body and ovaries and were transmitted to subsequent mosquito generations. These proof-of-principle data suggest that AgDNV could be used as part of a paratransgenic malaria control strategy by transduction of anti-Plasmodium peptides or insect-specific toxins in Anopheles mosquitoes. AgDNV will also be extremely valuable as an effective and easy-to-use laboratory tool for transient gene expression or RNAi in An. gambiae

    Decrease in thyroid adenoma associated (THADA) expression is a marker of dedifferentiation of thyroid tissue

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Thyroid adenoma associated (THADA) </it>has been identified as the target gene affected by chromosome 2p21 translocations in thyroid adenomas, but the role of THADA in the thyroid is still elusive. The aim of this study was to quantify <it>THADA </it>gene expression in normal tissues and in thyroid hyper- and neoplasias, using real-time PCR.</p> <p>Methods</p> <p>For the analysis <it>THADA </it>and 18S rRNA gene expression assays were performed on 34 normal tissue samples, including thyroid, salivary gland, heart, endometrium, myometrium, lung, blood, and adipose tissue as well as on 85 thyroid hyper- and neoplasias, including three adenomas with a 2p21 translocation. In addition, <it>NIS </it>(<it>sodium-iodide symporter</it>) gene expression was measured on 34 of the pathological thyroid samples.</p> <p>Results</p> <p>Results illustrated that <it>THADA </it>expression in normal thyroid tissue was significantly higher (<it>p </it>< 0.0001, exact Wilcoxon test) than in the other tissues. Significant differences were also found between non-malignant pathological thyroid samples (goiters and adenomas) and malignant tumors (<it>p </it>< 0.001, Wilcoxon test, t approximation), anaplastic carcinomas (ATCs) and all other samples and also between ATCs and all other malignant tumors (<it>p </it>< 0.05, Wilcoxon test, t approximation). Furthermore, in thyroid tumors <it>THADA </it>mRNA expression was found to be inversely correlated with <it>HMGA2 </it>mRNA. <it>HMGA2 </it>expression was recently identified as a marker revealing malignant transformation of thyroid follicular tumors. A correlation between <it>THADA </it>and <it>NIS </it>has also been found in thyroid normal tissue and malignant tumors.</p> <p>Conclusions</p> <p>The results suggest <it>THADA </it>being a marker of dedifferentiation of thyroid tissue.</p

    Complex Interactions between Soil-Transmitted Helminths and Malaria in Pregnant Women on the Thai-Burmese Border

    Get PDF
    Intestinal worms, particularly hookworm and whipworm, can cause anaemia, which is harmful for pregnant women. The WHO recommends deworming in pregnancy in areas where hookworm infections are frequent. Some studies indicate that coinfection with worms and malaria adversely affects pregnancy whereas other studies have shown that coinfection with worms might reduce the severity of malaria. On the Thai-Burmese border malaria in pregnancy has been an important cause of maternal death. We examined the relationship between intestinal helminth infections in pregnant women and their malaria risk in our antenatal care units. In total 70% of pregnant women had worm infections, mostly hookworm, but also roundworm and whipworm; hookworm was associated with mild anaemia although ova counts were not high. Women infected with hookworm had more malaria and their babies had a lower birth weight than women without hookworm. In contrast women with roundworm infections had the lowest rates of malaria in pregnancy. Deworming eliminates all worms. In this area it is unclear whether mass deworming would be beneficial

    HLA-C and HIV-1: friends or foes?

    Get PDF
    The major histocompatibility complex class I protein HLA-C plays a crucial role as a molecule capable of sending inhibitory signals to both natural killer (NK) cells and cytotoxic T lymphocytes (CTL) via binding to killer cell Ig-like receptors (KIR). Recently HLA-C has been recognized as a key molecule in the immune control of HIV-1. Expression of HLA-C is modulated by a microRNA binding site. HLA-C alleles that bear substitutions in the microRNA binding site are more expressed at the cell surface and associated with the control of HIV-1 viral load, suggesting a role of HLA-C in the presentation of antigenic peptides to CTLs. This review highlights the role of HLA-C in association with HIV-1 viral load, but also addresses the contradiction of the association between high cell surface expression of an inhibitory molecule and strong cell-mediated immunity. To explore additional mechanisms of control of HIV-1 replication by HLA-C, we address specific features of the molecule, like its tendency to be expressed as open conformer upon cell activation, which endows it with a unique capacity to associate with other cell surface molecules as well as with HIV-1 proteins

    Preclinical development of an oral anti-Wolbachia macrolide drug for the treatment of lymphatic filariasis and onchocerciasis

    No full text
    There is an urgent global need for a safe macrofilaricide drug to accelerate elimination of the neglected tropical diseases onchocerciasis and lymphatic filariasis. From an anti-infective compound library, the macrolide veterinary antibiotic, tylosin A, was identified as a hit against Wolbachia. This bacterial endosymbiont is required for filarial worm viability and fertility and is a validated target for macrofilaricidal drugs. Medicinal chemistry was undertaken to develop tylosin A analogs with improved oral bioavailability. Two analogs, A-1535469 and A-1574083, were selected. Their efficacy was tested against the gold-standard second-generation tetracycline antibiotics, doxycycline and minocycline, in mouse and gerbil infection models of lymphatic filariasis (Brugia malayi and Litomosoides sigmodontis) and onchocerciasis (Onchocerca ochengi). A 1- or 2-week course of oral A-1535469 or A-1574083 provided &gt;90% Wolbachia depletion from nematodes in infected animals, resulting in a block in embryogenesis and depletion of microfilarial worm loads. The two analogs delivered comparative or superior efficacy compared to a 3- to 4-week course of doxycycline or minocycline. A-1574083 (now called ABBV-4083) was selected for further preclinical testing. Cardiovascular studies in dogs and toxicology studies in rats and dogs revealed no adverse effects at doses (50 mg/kg) that achieved plasma concentrations &gt;10-fold above the efficacious concentration. A-1574083 (ABBV-4083) shows potential as an anti-Wolbachia macrolide with an efficacy, pharmacology, and safety profile that is compatible with a short-term oral drug course for treating lymphatic filariasis and onchocerciasis
    corecore