1,244 research outputs found

    Extending the operating temperature, wavelength and frequency response of HgCdTe heterodyne detectors

    Get PDF
    Near ideal optical heterodyne performance was obtained at GHz IF frequencies in the 10 micrometer wavelength region with liquid nitrogen cooled HgCdTe photodiodes. Heterodyne NEP's as low as 2.7 x 10 to the minus 20th power W/Hz at 100MHz, 5.4 x 10 to the minus 20th power W/Hz at 1.5 GHz, and 9.4 x 19 to the minus 20th power W/Hz at 3 GHz were achieved. Various physical phenomena which occur within a photodiode and affect heterodyne operation were examined in order to assess the feasibility of extending the operating temperature, wavelength, and frequency response of these HgCdTe photomixers

    NH3 in IRC plus 10216

    Get PDF
    Ammonia was detected in the circumstellar envelope of IRC +10216 by means of three infrared absorption lines in the nu sup 2 band around 950/cm. The lines are fully resolved at a resolution of 0.22 km/sec and indicate that most of the circumstellar gas is accelerated to expansion velocities around 14 km/sec within a few stellar radii. The NH3 profiles indicate a rotational temperature between 400 and 700 K, and H2 density between 10 to the 8th power/cu cm and 10 to the 10th power/cu cm, and NH3 column density of 10 to the 17th power/sq cm. The H2 density indicates that the mass of the circumstellar envelope within a 1 arcsec radius is approximately 0.1 solar masses

    The brightness distribution of IRC +10216 at 11 microns

    Get PDF
    The brightness distribution of IRC +10216 at a wavelength of 11 microns was measured in detail using a spatial interferometer. This brightness distribution appears to have azimuthal symmetry; an upper limit of 1.1 may be set to the ellipticity at 11 microns if the object has a major axis oriented either along or perpendicular to the major axis of the optical image. The radial distribution shows both compact and extended emission. The extended component, which is due to thermal emission from circumstellar dust, contributes 91% of the total flux and has a 1/e diameter of 0.90 minutes. The tapered shape of this component is consistent with a l/r squared dust density dependence. The compact component is unresolved (less than 0.2 minutes in diameter) and represents emission from the central star seen through the circumstellar envelope

    Variations in the spatial distribution of 11 Micron radiation from omicron Ceti

    Get PDF
    The spatial distribution of 11 micron radiation from omicron Ceti was observed at various phases of its light cycle using a stellar interferometer. Changes were seen which can be attributed to variation in the strength of thermal emission from circumstellar dust relative to the stellar continuum at 11 microns. These changes are shown to be correlated with the changes in luminosity of micron Ceti in such a way that dust grain emission at 11 microns was increased more than the continuum during the period of maximum luminosity. The degree of the change in dust grain emission implies that the maximum dust temperature is in the range of 500 K to 700 K during minimum stellar luminosity

    Spatial heterodyne interferometry of VY Canis Major's, alpha Orionis, alpha Scorpii, and R leonis at 11 microns

    Get PDF
    Using the technique of heterodyne interferometry, measurements were made of the spatial distribution of 11 micron radiation from four late type stars. The circumstellar shells surrounding VY Canis Majoris, alpha Orionis, and alpha Scorpii were resolved, whereas that of R Leonis was only partially resolved at a fringe spacing of 0.4 sec

    Targeting cellular calcium homeostasis to prevent cytokine-mediated beta cell death

    Get PDF
    AbstractPro-inflammatory cytokines are important mediators of islet inflammation, leading to beta cell death in type 1 diabetes. Although alterations in both endoplasmic reticulum (ER) and cytosolic free calcium levels are known to play a role in cytokine-mediated beta cell death, there are currently no treatments targeting cellular calcium homeostasis to combat type 1 diabetes. Here we show that modulation of cellular calcium homeostasis can mitigate cytokine- and ER stress-mediated beta cell death. The calcium modulating compounds, dantrolene and sitagliptin, both prevent cytokine and ER stress-induced activation of the pro-apoptotic calcium-dependent enzyme, calpain, and partly suppress beta cell death in INS1E cells and human primary islets. These agents are also able to restore cytokine-mediated suppression of functional ER calcium release. In addition, sitagliptin preserves function of the ER calcium pump, sarco-endoplasmic reticulum Ca2+-ATPase (SERCA), and decreases levels of the pro-apoptotic protein thioredoxin-interacting protein (TXNIP). Supporting the role of TXNIP in cytokine-mediated cell death, knock down of TXNIP in INS1-E cells prevents cytokine-mediated beta cell death. Our findings demonstrate that modulation of dynamic cellular calcium homeostasis and TXNIP suppression present viable pharmacologic targets to prevent cytokine-mediated beta cell loss in diabetes.</jats:p

    Properties of Nucleon Resonances by means of a Genetic Algorithm

    Get PDF
    We present an optimization scheme that employs a Genetic Algorithm (GA) to determine the properties of low-lying nucleon excitations within a realistic photo-pion production model based upon an effective Lagrangian. We show that with this modern optimization technique it is possible to reliably assess the parameters of the resonances and the associated error bars as well as to identify weaknesses in the models. To illustrate the problems the optimization process may encounter, we provide results obtained for the nucleon resonances Δ\Delta(1230) and Δ\Delta(1700). The former can be easily isolated and thus has been studied in depth, while the latter is not as well known experimentally.Comment: 12 pages, 10 figures, 3 tables. Minor correction
    • …
    corecore