185 research outputs found
On-line solid phase microextraction derivatization for the sensitive determination of multi-oxygenated volatile compounds in air
Multi-oxygenated volatile organic compounds are important markers of air pollution and precursors of ozone and secondary aerosols in both polluted and remote environments. Herein, their accurate determination was enhanced. The approach was based on an automated system for active sampling and on-fibre derivatization coupled with the gas chromatography–mass spectrometry (GC–MS) technique.
The method capability was determined for different compound families, such as aldehydes, ketones, α-dicarbonyls, hydroxy-aldehydes, hydroxy-ketones, and carboxylic acids. A good accuracy (<7 %) was demonstrated from the results compared to Fourier-transform infrared spectroscopy (FTIR). Limits of detection (LODs) of 6–100 pptV were achieved with a time resolution lower than 20 min. The developed method was successfully applied to the determination of multi-oxygenated compounds in air samples collected during an intercomparison campaign (EUROCHAMP-2020 project). Also, its capability and accuracy for atmospheric monitoring was demonstrated in an isoprene ozonolysis experiment. Both were carried out in the high-volume outdoor atmospheric simulation chambers (EUPHORE, 200 m3).
In summary, our developed technique offers near-real-time monitoring with direct sampling, which is an advantage in terms of handling and labour time for a proper quantification of trace levels of atmospheric multi-oxygenated compounds
Alkaline ceramidase 1 is essential for mammalian skin homeostasis and regulating whole-body energy expenditure.
The epidermis is the outermost layer of skin that acts as a barrier to protect the body from the external environment and to control water and heat loss. This barrier function is established through the multistage differentiation of keratinocytes and the presence of bioactive sphingolipids such as ceramides, the levels of which are tightly regulated by a balance of ceramide synthase and ceramidase activities. Here we reveal the essential role of alkaline ceramidase 1 (Acer1) in the skin. Acer1-deficient (Acer1(-/-) ) mice showed elevated levels of ceramide in the skin, aberrant hair shaft cuticle formation and cyclic alopecia. We demonstrate that Acer1 is specifically expressed in differentiated interfollicular epidermis, infundibulum and sebaceous glands and consequently Acer1(-/-) mice have significant alterations in infundibulum and sebaceous gland architecture. Acer1(-/-) skin also shows perturbed hair follicle stem cell compartments. These alterations result in Acer1(-/-) mice showing increased transepidermal water loss and a hypermetabolism phenotype with associated reduction of fat content with age. We conclude that Acer1 is indispensable for mammalian skin homeostasis and whole-body energy homeostasis. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland
EROS is a selective chaperone regulating the phagocyte NADPH oxidase and purinergic signalling
EROS (essential for reactive oxygen species) protein is indispensable for expression of gp91phox, the catalytic core of the phagocyte NADPH oxidase. EROS deficiency in humans is a novel cause of the severe immunodeficiency, chronic granulomatous disease, but its mechanism of action was unknown until now. We elucidate the role of EROS, showing it acts at the earliest stages of gp91phox maturation. It binds the immature 58 kDa gp91phox directly, preventing gp91phox degradation and allowing glycosylation via the oligosaccharyltransferase machinery and the incorporation of the heme prosthetic groups essential for catalysis. EROS also regulates the purine receptors P2X7 and P2X1 through direct interactions, and P2X7 is almost absent in EROS-deficient mouse and human primary cells. Accordingly, lack of murine EROS results in markedly abnormal P2X7 signalling, inflammasome activation, and T cell responses. The loss of both ROS and P2X7 signalling leads to resistance to influenza infection in mice. Our work identifies EROS as a highly selective chaperone for key proteins in innate and adaptive immunity and a rheostat for immunity to infection. It has profound implications for our understanding of immune physiology, ROS dysregulation, and possibly gene therapy.</jats:p
Outcomes of Patients with Nelson's Syndrome after Primary Treatment: A Multicenter Study from 13 UK Pituitary Centers.
CONTEXT: Long-term outcomes of patients with Nelson's syndrome (NS) have been poorly explored, especially in the modern era. OBJECTIVE: To elucidate tumor control rates, effectiveness of various treatments, and markers of prognostic relevance in patients with NS. PATIENTS, DESIGN, AND SETTING: Retrospective cohort study of 68 patients from 13 UK pituitary centers with median imaging follow-up of 13 years (range 1-45) since NS diagnosis. RESULTS: Management of Cushing's disease (CD) prior to NS diagnosis included surgery+adrenalectomy (n = 30; eight patients had 2 and one had 3 pituitary operations), surgery+radiotherapy+adrenalectomy (n = 17; two received >1 courses of irradiation, two had ≥2 pituitary surgeries), radiotherapy+adrenalectomy (n = 2), and adrenalectomy (n = 19). Primary management of NS mainly included surgery, radiotherapy, surgery+radiotherapy, and observation; 10-year tumor progression-free survival was 62% (surgery 80%, radiotherapy 52%, surgery+radiotherapy 81%, observation 51%). Sex, age at CD or NS diagnosis, size of adenoma (micro-/macroadenoma) at CD diagnosis, presence of pituitary tumor on imaging prior adrenalectomy, and mode of NS primary management were not predictors of tumor progression. Mode of management of CD before NS diagnosis was a significant factor predicting progression, with the group treated by surgery+radiotherapy+adrenalectomy for their CD showing the highest risk (hazard ratio 4.6; 95% confidence interval, 1.6-13.5). During follow-up, 3% of patients had malignant transformation with spinal metastases and 4% died of aggressively enlarging tumor. CONCLUSIONS: At 10 years follow-up, 38% of the patients diagnosed with NS showed progression of their corticotroph tumor. Complexity of treatments for the CD prior to NS diagnosis, possibly reflecting corticotroph adenoma aggressiveness, predicts long-term tumor prognosis
Linking Inflammation to Natural Killer T Cell Activation
Immune activation is often associated with inflammation, but inflammation's role in the expansion of antigen-specific immune responses remains unclear. This primer focuses on recent findings that show how specific natural killer T cells are activated by inflammatory messengers, thus illuminating the cellular and molecular links between immunity and inflammation
The ROS Scavenger, NAC, Regulates Hepatic Vα14iNKT Cells Signaling during Fas mAb-Dependent Fulminant Liver Failure
Uncontrolled systemic activation of the immune system is an early initiating event that leads to development of acute fulminant liver failure (FLF) in mice after treatment with agonistic Fas mAb. In this study, we demonstrate that treatment of mice with N-acetylcysteine (NAC), an ROS scavenger and glutathione (GSH) precursor, almost completely abolished Fas mAb-induced FLF through suppression of Vα14iNKT cell activation, IFN-γ signaling, apoptosis and nitrotyrosine formation in liver. In addition, enrichment of the liver with GSH due to Vα14iNKT cells deficiency, induced an anti-inflammatory response in the liver of Jα18−/− mice that inhibited apoptosis, nitrotyrosine formation, IFN-γ signaling and effector functions. In summary, we propose a novel and previously unrecognized pro-inflammatory and pro-apoptotic role for endogenous ROS in stimulating Th1 signaling in Vα14iNKT cells to promote the development of FLF. Therefore, our study provides critical new insights into how NAC, a ROS scavenger, regulates Th1 signaling in intrahepatic Vα14iNKT cells to impact inflammatory and pathological responses
- …